
Training-Free Neural Active Learning with Initialization-Robustness Guarantees

Apivich Hemachandra 1 Zhongxiang Dai 1 Jasraj Singh 2 See-Kiong Ng 1 Bryan Kian Hsiang Low 1

Abstract
Existing neural active learning algorithms have
aimed to optimize the predictive performance of
neural networks (NNs) by selecting data for la-
belling. However, other than a good predictive
performance, being robust against random param-
eter initializations is also a crucial requirement
in safety-critical applications. To this end, we in-
troduce our expected variance with Gaussian pro-
cesses (EV-GP) criterion for neural active learn-
ing, which is theoretically guaranteed to select
data points which lead to trained NNs with both
(a) good predictive performances and (b) initial-
ization robustness. Importantly, our EV-GP crite-
rion is training-free, i.e., it does not require any
training of the NN during data selection, which
makes it computationally efficient. We empir-
ically demonstrate that our EV-GP criterion is
highly correlated with both initialization robust-
ness and generalization performance, and show
that it consistently outperforms baseline methods
in terms of both desiderata, especially in situa-
tions with limited initial data or large batch sizes.

1. Introduction
Deep neural networks (NNs) have recently achieved im-
pressive performances in various applications thanks to the
availability of massive amount of labelled data. However, in
some applications, data labelling is so costly that obtaining
large datasets is infeasible. In this regard, a number of works
have used the method of neural active learning to select a
small number of data points to be labelled and subsequently
be used for the training of the NNs (Ren et al., 2021; Sener
& Savarese, 2018; Kirsch et al., 2019; Ash et al., 2020).

When selecting the data for labelling, existing neural active

1Department of Computer Science, National University of
Singapore, Republic of Singapore 2School of Computer Science
and Engineering, Nanyang Technological University, Republic
of Singapore. Correspondence to: Bryan Kian Hsiang Low
<lowkh@comp.nus.edu.sg>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

Figure 1. Neural networks initialized randomly with different
seeds (left), after training, can give consistent outputs (center)
or highly varying outputs (right) depending on the training data.

learning methods have only aimed to optimize the predic-
tive performance (e.g., generalization performance) of the
trained NNs. However, the output from a neural network is
heavily dependent on its training process, especially on its
initialization (Cyr et al., 2019; Lee et al., 2020). Therefore
in some safety-critical applications, having small variability
in the trained NNs with respect to model initialization is
also a crucial requirement. For example, given a training
set of patient data in a healthcare application (e.g., disease
diagnosis), if the NNs trained using different random initial-
izations have drastically disparate predictions, the resulting
NNs would be too unreliable to be used for clinical diagno-
sis due to the high-stakes nature of the application (Esteva
et al., 2019). As a simple illustration, Fig. 1 shows that dif-
ferent training sets can indeed result in distinct sensitivities
of the trained NNs to model initialization, and hence a badly
constructed training set (e.g., the rightmost figure in Fig. 1)
can cause the trained NN to be highly variable (and hence
untrustworthy) w.r.t. the model initialization. Therefore, in
these important applications, it is paramount for a neural
active learning algorithm to select data points which lead to
trained NNs with not only (a) good predictive performances
but also (b) initialization robustness.

To this end, we introduce our Expected Variance with Gaus-
sian Processes (EV-GP) criterion, which is theoretically
shown to select data points which satisfy both criteria.
Specifically, we firstly leverage the theory of neural tangent
kernel (NTK) (Jacot et al., 2020) and overparameterized
NNs (Lee et al., 2020) to characterize the predictive distribu-
tion of trained NNs (Sec. 3.1) with respect to random model
initialization. This allows us to measure the robustness of
the trained NNs against model initialization via the output
variance, i.e., a smaller output variance indicates a more
initialization-robust NN. Next, we introduce an efficiently
computable approximation of the output variance, and de-

Training-Free Neural Active Learning with Initialization-Robustness Guarantees

rive a theoretical guarantee on the approximation quality
(Sec. 3.1). Subsequently, we show that this approximate
output variance, which is an indicator of (the inverse of) ini-
tialization robustness, is also, interestingly, an upper bound
on the generalization error of the trained NNs (Sec. 3.2).

As a result, our EV-GP active learning criterion (Sec. 3.3),
which is based on the minimization of the above-mentioned
approximate output variance, is able to select data points
which lead to both (a) good predictive performances (i.e.,
small generalization errors) and (b) initialization robustness.
Moreover, our EV-GP criterion also has the additional ad-
vantages of computational efficiency and generality. Firstly,
during data selection, the computation of our EV-GP crite-
rion does not require training of the NN, which is usually
computationally costly. Therefore, our EV-GP criterion
is computationally efficient and can be used to select all
data points in a small number of batches or even a single
batch. Secondly, our EV-GP criterion does not impose any
requirement on the training process of the NN, and is hence
applicable to generic NNs rather than requiring specific
types of models such as Bayesian NNs. Furthermore, we
introduce a theoretically grounded method for model selec-
tion which is able to automatically optimize the architecture
of the NN based on the selected data points (Sec. 4).

We empirically show that our EV-GP criterion can accu-
rately characterize the output variance (w.r.t. the random
model initialization) and hence the initialization robustness
of trained NNs (Secs. 5.1 and 5.2). Furthermore, we use
extensive real-world regression (Sec. 5.2) and classification
(Sec. 5.3) experiments to show that our EV-GP criterion
outperforms existing baselines in terms of both initialization
robustness and predictive performances. Of note, the per-
formance advantage of our EV-GP criterion is particularly
pronounced when there is limited labelled data or the batch
size is large (Sec. 5.3). Lastly, we also empirically verify
that our model selection method (Sec. 4) is able to further
improve the performance of our EV-GP criterion (Sec. 5.4).

2. Problem Setup and Background
In our problem setup, consistent with previous works on
active learning, we have access to an unlabelled pool of
input data XU whose corresponding labels are expensive to
obtain. Also, suppose we have a set of testing input data
XT (whose corresponding labels are unknown), which we
want our NN to eventually make predictions on. In practice,
when a set of testing input is not available, we can simply
let XT = XU , which we have done in our experiments.
Additionally, we are given a set L0 = (X0,y0) of already-
labelled data (which may be empty), and the algorithm
proceeds to construct a set L = (XL,yL) where XL \X0 ⊂
XU and |L \ L0| ≤ k. The parameter k can be considered
the budget for active learning, which is a limit on the number

of queries to the oracle. To construct L, in each round of
active learning, the algorithm selects a set of b unlabelled
input data points Xb ⊂ XU and submits them to the oracle
to obtain their corresponding labels yb. It is desirable to
have minimal training of the NN between different rounds of
querying in order to avoid incurring excessive computational
costs and long delays between each rounds.

Once the labelled training set L is obtained after the active
learning algorithm, we use it as the training set D = L to
train an NN, f(·; θ), where θ denotes its parameters. The
model parameters are firstly initialized, θ0 ∼ init(θ), and
following the common practice (Glorot & Bengio, 2010),
we assume that each parameter of θ0 is independently drawn
from a Gaussian distribution with zero mean and a known
variance. After initialization, the model is trained with
gradient-based optimization to minimize the regularized
mean-squared error (MSE) loss:

ℓ(D; θ) = 1

|D|
∑

(x,y)∈D

1

2
∥f(x; θ)− y∥2 + λ

2
∥θ∥2 . (1)

The loss function comprises of a mean-squared error term
(first term) and a regularisation term (second term), in which
λ controls their trade-off. Note that the regularized MSE
loss (1) is only required in our theoretical analysis and in
practice, other loss functions such as the cross-entropy loss
can also be used (Sec. 5.3). The NN model is assumed
to be trained till convergence, resulting in the parameters
θ∞ = train(θ0) where train(·) denotes the function of the
training process. As discussed in Sec. 1, we would like
the final model predictions f(x; train(θ0)) to achieve both
small generalization errors and low output variances with
respect to the randomness of θ0.

2.1. Neural Tangent Kernels
When training a NN using a training set D = (X ,y) with
gradient descent (GD): θt+1 ← θt − η · ∇θℓ(D; θt) where
η is the learning rate, it has been shown (Lee et al., 2020)
that as long as η is small enough, the training can be approx-
imated by continuous GD. As a result, the change in the
predictive output f(X ; θt) over time can be expressed as:

∂f(X ; θt)
∂t

= −η∇θf(X ; θt)∇θf(X ; θt)⊤︸ ︷︷ ︸
≜Θ̂t(X ,X)

∇f ℓ(D; θ) .
(2)

The term Θ̂t(X ,X ′) ≜ ∇θf(X ; θt)∇θf
⊤(X ′; θt) is re-

ferred to as the (empirical) neural tangent kernel (NTK)
(Jacot et al., 2020; Arora et al., 2019). While kernels are de-
fined over a tuple of elements from the input space, we will
overload the notation for all kernels and use Θ(X ,X ′) =
(Θ(x, x′))x∈X ,x′∈X ′ to represent the matrix constructed us-
ing values of the kernel. We will sometimes use the short-
hand notation ΘX to represent Θ(X ,X) and ΘX ′X to repre-
sent Θ(X ′,X) when the context is clear, which is consistent
with previous works on NTK (He et al., 2020).

Training-Free Neural Active Learning with Initialization-Robustness Guarantees

The work of Lee et al. (2020) has shown that when the width
of the NN approaches infinity, the output of the NN can be
approximated by a linear model:

f(x; θ) ≈ f(x; θ0) + ⟨∇θf(x; θ0), θ − θ0⟩ , (3)

and the empirical NTK Θ̂t(·, ·) stays constant throughout
training and approaches a deterministic kernel Θ(·, ·) re-
gardless of the initialization (Lee et al., 2020). Using the
linear approximation (3), Lee et al. (2020) have shown
that if a randomly initialized NN is trained on data (X ,y)
with the mean-squared error loss ((1) with λ = 0) till con-
vergence, then the predictions of the converged model on
a testing set XT follow a normal distribution: f(XT) ∼
N (µ(XT |X ,y),ΣNN(XT |X)), where the output mean is

µNN(XT |X ,y) = ΘXTXΘ−1
X y , (4)

and the output covariance is

ΣNN(XT |X) = KXT
+ΘXTXΘ−1

X KXΘ−1
X ΘXXT

−
(
ΘXTXΘ−1

X KXXT
+KXTXΘ−1

X ΘXXT

)
. (5)

When the testing set XT consists of only a single point
x, we use σ2

NN(x|X) = ΣNN(XT |X) to denote the predic-
tive variance at x. The kernel K in (5), which is defined as
K(x, x′) = Eθ0∼init(θ)[f(x; θ0)·f(x′; θ0)], is the covariance
of the NN output with respect to the random initialization.
Similar to Θ above, we have used the shorthand notations
KX andKX ′X to representK(X ,X) andK(X ′,X), respec-
tively. We will also use µNN,f and σ2

NN,f to represent the
predictive mean and variance calculated using a particular
model architecture f .

2.2. Gaussian Processes

To derive our active learning criterion (Sec. 3), we will make
use of tools from the literature of Gaussian processes (GPs)
(Rasmussen & Williams, 2006). A GP is fully specified
by a prior mean function µ(x) which is usually assumed
to be µ(x) = 0 ∀x, and a covariance function K(x, x′)
(also called kernel function). Given some data (X ,y),
the GP posterior predictive distribution of the outputs yT

at a testing set XT (in the noiseless setting) is given by
N (KXTXK−1

X y,KXT
− KXTXK−1

X KXXT
). The princi-

pled uncertainty measures provided by GPs have been used
for data selection in active learning (Krause & Guestrin,
2007; Krause et al., 2008). For example, Krause & Guestrin
(2007) have used the mutual information between the se-
lected data and the unlabelled data, calculated using GPs, as
the active learning criterion.

3. Initialization-Robust Active Learning
In this section, we firstly introduce a computationally ef-
ficient approximation of the output variance of an NN

w.r.t. random initializations, and derive a theoretical guaran-
tee on the approximation quality (Sec. 3.1). Next, we show
that the approximate output variance from Sec. 3.1, is also,
interestingly, an upper bound on the generalization error of
the NN (Sec. 3.2). Finally, we use the approximate output
variance to design our active learning criterion (Sec. 3.3).

3.1. Approximation of Output Variance of Trained
Neural Network

In the infinite-width regime, when an NN with initial pa-
rameters θ0 is trained till convergence to yield parameters
train(θ0), the output of the NN on a test set XT follows a
normal distribution with mean µNN(XT |X ,y) (Eq. (4)) and
covariance ΣNN(XT |X) (Eq. (5)) (Lee et al., 2020). The ran-
domness in the output distribution results from the random
initializations θ0. Given this, we see that ΣNN can serve as a
natural and principled measure of initialization robustness.

However, ΣNN presents a significant computational chal-
lenge because it requires computing two different kernels
(i.e., Θ and K) and a number of matrix inversion and mul-
tiplication operations. Therefore, by drawing inspiration
from GPs (Rasmussen & Williams, 2006), we introduce an
approximation of ΣNN which is both computationally effi-
cient (Sec. 3.1.1) and equipped with a theoretical guarantee
on the approximation quality (Sec. 3.1.2).

3.1.1. COMPUTATIONAL EFFICIENCY

Given some data (X ,y), performing GP regression with
NTK as the covariance function (which we refer to as
NTKGP following He et al. (2020)) leads to the out-
put distribution (on a testing set XT) of f(XT) ∼
N (µNTKGP(XT |X ,y),ΣNTKGP(XT |X)), where µNTKGP =
µNN (4) and

ΣNTKGP(XT |X) = ΘXT
−ΘXTXΘ−1

X ΘXXT
. (6)

When XT contains a single point x, we use σ2
NTKGP(x|X) =

ΣNTKGP(XT |X) to denote the output variance at x.

Compared with ΣNN, the covariance function ΣNTKGP is
more efficient to compute because (a) it only requires com-
puting one (instead of two) kernel Θ which can also be
easily approximated using the inner product of the parame-
ter gradients at initialization (Sec. 2.1), and (b) the posterior
distributions of GPs are well-studied, allowing us to adopt
existing tools to further reduce the computational cost of
ΣNTKGP. Even though ΣNTKGP incurs a cost of O(n3) with
n queried data points due to inversion of an n-by-n matrix,
we are able to use results from linear algebra to perform
low-rank updates to the GP covariance to reduce the run-
ning time to O(n2). Furthermore, we can adopt techniques
from the abundant literature of sparse GPs to significantly
reduce the dependency on n (Quiñonero-Candela & Ras-
mussen, 2005; Hoang et al., 2015). We discuss the various

Training-Free Neural Active Learning with Initialization-Robustness Guarantees

approximation methods for ΣNTKGP in App. D.

3.1.2. GUARANTEED APPROXIMATION QUALITY

To provide a theoretical justification for our approximation
ΣNTKGP (6), we need to theoretically bound the difference
between ΣNTKGP and ΣNN. The work of He et al. (2020)
has shown that ΣNN(X ′|X) ⪯ ΣNTKGP(X ′|X). In other
words, for a single test point x, we have that σ2

NN(x|X) ≤
σ2

NTKGP(x|X), which suggests that the NTKGP approxima-
tion (6) is an overestimation of the true output variance (5).
However, this result is not enough for guaranteeing a small
approximation error. Therefore, we prove here a stronger
connection between σ2

NN(x|X) and σ2
NTKGP(x|X):

Theorem 3.1 (Informal). Let f(·; θ) be an infinite-width
NN with ReLU activation and L ≥ 2 hidden layers
whose NTK satisfies |Θ(x, x′)| ≤ B for all x, x′ ∈
X . Then, there exist some constants α > 0 and β =
O
(
poly(|X |, B, L, λmin(ΘX)−1)

)
such that∣∣σ2

NN(x|X)− α · σ2
NTKGP(x|X)

∣∣ ≤ β .

Theorem 3.1 shows that σ2
NN(x|X) and α · σ2

NTKGP(x|X)
have a bounded difference and are hence expected to behave
similarly. Of note, when using the active learning criterion
based on σ2

NTKGP (Sec. 3.3) to select data points to query,
what affects the selected points is only the relative rank-
ing of the values of the criterion (at different inputs in the
unlabelled pool), therefore, the presence of the constant
α > 0 does not affect our active learning algorithm. The
approximation error in Theorem 3.1 depends on a number
of factors including the model architecture (which affects
the difference between Θ andK), the number of points in X
(due to the accumulation of the approximation errors with
more data points), and the eigenvalues of ΘX (which affects
how “well-behaved” the matrix ΘX is).

As a brief sketch of the proof, firstly, it can be verified that if
K(x, x′) = α·Θ(x, x′), then σ2

NN(x|X) = α·σ2
NTKGP(x|X).

However, in general, K(x, x′) ̸= α ·Θ(x, x′). Instead, we
have managed to show that the ratio between K(x, x′) and
Θ(x, x′) is bounded, i.e. there exists some constants a− > 0
and a+ > 0 (which depend on L) such that

a− ≤ K(x, x′)/Θ(x, x′) ≤ a+ . (7)

As a result, Eq. (7) allows us to bound
∣∣σ2

NN(x|X) − α ·
σ2

NTKGP(x|X)
∣∣. The complete proof is presented in App. A.

We will also provide empirical justifications for Theorem 3.1
in Sec. 5.1 by showing that σ2

NTKGP is indeed highly corre-
lated with the empirical output variance of the NN resulting
from different model initializations, and is hence a reliable
indicator of initialization robustness.

3.2. Connection with Generalization Error

In this section, we show that the approximate output vari-
ance σ2

NTKGP (6) is also an upper bound on the generalization

error of the trained NN and hence a good indicator of its
predictive performance. To analyze the performance of the
trained neural network, we make the following assumption
about the groundtruth function f∗ in a manner similar to
Vakili et al. (2021b).

Assumption 3.2. Assume that the groundtruth function
f∗ ∈ HΘ. Specifically, f∗ lies in the reproducing kernel
Hilbert space (RKHS) of the NTK Θ, or equivalently, its
RKHS norm is such that ∥f∗∥HΘ ≤ B for some B ∈
R≥0. Further assume that the function observation at any
input xi is given by yi = f∗(xi) + ξi, in which every ξi
is i.i.d. observation noise drawn from an R sub-Gaussian
distribution: E[exp(ηξi)] ≤ exp(η2R2/2) for all η ∈ R.

Both assumptions in Assumption 3.2 are commonly made
in the analysis of kernelized and neural bandits (Chowd-
hury & Gopalan, 2017; Kassraie & Krause, 2022). They
allow us to show the following theoretical guarantee on the
generalization error:

Theorem 3.3 (Informal). Suppose we train an infinitely
wide NN f(·; θ) with training dataset (X ,y) on mean-
squared error loss function using gradient descent until con-
vergence. Then, there exists a constant ζ = O

(
poly(B,R)

)
such that for any x ∈ X , with high probability over the
random observation noise ε and network initialization θ0,∣∣f∗(x)− f(x; train(θ0))

∣∣ ≤ ζ · σNTKGP(x|X). (8)

Theorem 3.3 shows that the generalization error of a trained
NN through gradient descent is proportional to σNTKGP (6),
where the constant of proportionality ζ is independent of
x and X . As a result, minimizing σNTKGP will not only (a)
decrease the output variance (Sec. 3.1) and hence improve
initialization robustness, but also (b) reduce the generaliza-
tion error and hence enhance the predictive performance.
The degree of correlation between σNTKGP and the general-
ization performance, represented by the constant ζ , depends
on the parameters B and R, such that the easier the func-
tion f∗ is to learn (i.e., a smaller B) or the less noisy the
observations are (i.e., a smaller R), the better the degree of
correlation. Theorem 3.3 is also consistent with the empiri-
cally observed characteristics of over-parameterised NNs,
because NN models with lower variance are also observed
to have higher predictive accuracy (Neal et al., 2019). Theo-
rem 3.3 will be stated formally and proved in App. B.

3.3. Active Learning Criterion

Since we have shown that minimizing σNTKGP(x|X) can
improve both initialization robustness (Sec. 3.1) and gener-
aliztion performance (Sec. 3.2), we design our active learn-
ing criterion based on the minimization of σNTKGP(x|X)
across all test input points x ∈ XT . Specifically, our EV-
GP criterion encourages the selection of input data points

Training-Free Neural Active Learning with Initialization-Robustness Guarantees

which result in small expected output variance σ2
NTKGP(x|X)

across all test inputs, and we estimate the expected variance
by averaging σ2

NTKGP(x|X) over the available test set XT :

αEV(X) =
1

|XT |
∑
x∈XT

[
σ2

NTKGP(x|∅)− σ2
NTKGP(x|X)

]
.

(9)
We have added σ2

NTKGP(x|∅) to the criterion so that
αEV(X) ≥ 0 and that our criterion is to be maximized dur-
ing active learning.1 We will sometimes also use αEV(X ; f)
to indicate that the criterion uses the model architecture f .

Our αEV criterion (9) has multiple computational benefits.
Firstly, it is training-free, i.e., its calculation does not re-
quire any training of the NN and is hence able to sidestep
significant computational costs resulting from model train-
ing. Secondly, it only requires calculating the variance at
individual test points rather than the full covariance over the
testing set. Thirdly, it can make use of the approximation
techniques based on sparse GPs discussed in Sec. 3.1.1, for
which we simply need to replace σ2

NTKGP by its sparse GP
counterparts in Eq. (9). Fourthly, it is monotone submodular,
and therefore a greedy approach (i.e., select the point which
gives the largest increase in the criterion in each selection
round) is guaranteed to give a (1 − 1

e)-optimal solution
(Nemhauser et al., 1978). We adopt the greedy approach
in our experiments for simplicity (with some techniques
for speedups which we discuss in App. E), and leave the
use of other more sophisticated submodular optimization
techniques to future works. Furthermore, another advantage
of our αEV criterion is that it is label-independent, because
the calculation of σ2

NTKGP (6) does not require the observa-
tions. Therefore, our criterion does not need the heuristic of
pseudo-labels which is required by previous active learning
algorithms (Ash et al., 2020; Mohamadi et al., 2022).

In addition to our αEV criterion (9), we can also use ΣNTKGP
to construct alternative criteria with different characteristics.
We introduce two additional criteria in App. C, which are
based on, respectively, mutual information (which requires
computing the full covariance matrix) and the percentile
variance (which is not submodular in general).

4. Initialization-Robust Active Learning with
Model Selection

A common issue with existing neural active learning algo-
rithms is that a model architecture has to be fixed in advance
and then used for the data point selection. However, in
practice, especially when having no access to (labelled) data
beforehand, it is infeasible to select the best model architec-
ture prior to running the neural active learning algorithms.
To this end, by leveraging the output distributions of over-
parameterized NNs in a similar way to Sec. 3.1, we extend

1This is to follow convention of other active learning methods.

our initialization-robust active learning algorithm (Sec. 3) to
simultaneously select the data points to query (Sec. 3.3) and
optimize the model architecture in a training-free manner.

Given a model architecture f and a training setD = (X ,y),
the expected squared error of the trained model on a testing
set DT w.r.t. random parameter initializations is given by
(proof in App. F.1)

α̂M,DT
(f ;D) ≜ E

θ0∼init(θ)
[ℓ (DT , train(θ0))]

=
1

2

∑
(x,y)∈DT

[
(y − µNN,f (x|X))2︸ ︷︷ ︸

1⃝

+σ2
NN,f (x|X)︸ ︷︷ ︸

2⃝

]
.

(10)

The first term in Eq. (10), 1⃝, characterizes how well the
trained model is able to fit the underlying function, which is
related to its generalization performance. The second term,
2⃝, represents the predictive variance of the trained model,

which is an indicator of the complexity of the model. A
good model architecture should be expressive enough to fit
the underlying function well (i.e., have a small 1⃝), while
also not being too sensitive to the parameter initialization
(i.e., have a small 2⃝).

Eq. (10) allows us to design our model selection method
based on cross validation using the queried data D during
active learning. Specifically, we adopt the cross valida-
tion method of bootstrapping (Kohavi, 1995): we select a
random subsetDT ⊂ D of size κ as the testing set, and com-
pute Eq. (10) using D \ DT as the training set. As a result,
this leads to the following criterion for model selection:2

αM (f ;D) = − E
DT⊂D; |DT |=κ

[
α̂M,DT

(f ;D \ DT)
]
. (11)

In practice, the user chooses an appropriate κ and computes
the empirical mean to approximate the expectation in (11).
Since αM is computed far fewer times than αEV during
the active learning process, it is reasonable to use σ2

NN di-
rectly rather than approximating it with σ2

NTKGP. As a result,
in our algorithm for model selection, given a set of candi-
date model architecturesM = {f1, . . . , fm}, we evaluate
Eq. (11) for every architecture f ∈ M and subsequently
choose the architecture which maximizes this criterion.

The full algorithm with both data and model selection,
which we name EV-GP+MS, is shown in Algo. 1. The
algorithm alternates between two phases. The first phase
uses a fixed model architecture to greedily maximize our
αEV criterion (9) for data selection, and the second phase
utilizes the queried data so far to select the best model ar-
chitecture using our criterion in Eq. (11).

5. Experiments
When reporting the model output variance or average per-
formance, we train an NN 50 times (regression) or 25 times

2The negative sign is added to convert to maximization.

Training-Free Neural Active Learning with Initialization-Robustness Guarantees

Algorithm 1 EV-GP+MS
Input: Initial labelled data (X0,y0), unlabelled pool XU ,
candidate model architecturesM, batch size b
(XL,yL)← (X0,y0)
Pick an initial model f∗ ∈M
repeat

// Phase 1: Data selection
for b iterations do
x∗ ← argmaxx∈XU\XL

αEV(XL ∪ {x}; f∗)
XL ← XL ∪ {x∗}

end for
Query the unlabelled points in XL for the labels yL
// Phase 2: Model selection
f∗ ← argmaxf∈M αM

(
f ; (XL,yL)

)
until budget exhausted
return (XL,yL), f

∗

(classification) with the same architecture but with differ-
ent model initializations, and then calculate the empirical
mean and variance. All experiments are repeated 5 times
unless stated otherwise, and their mean and standard devi-
ations are reported. Although the theoretical properties of
ΣNN and ΣNTKGP are applicable to infinite-width NNs, we
follow the practice of previous works on NTKs (He et al.,
2020; Mohamadi et al., 2022) and use finite-width NNs,
because they are able to achieve good performances. In
our experiments, we test our algorithm using both the the-
oretical NTKs (computed using the JAX-based (Bradbury
et al., 2018) Neural-Tangents package (Novak et al.,
2019)), and the empirical NTK (computed using PyTorch) .
We will use EV-GP-EMP to denote instances when we use
the empirical NTK for our algorithm. We discuss the com-
putation of NTKs further in App. G.2. We adopt the MSE
loss (1) for regression experiments and the cross-entropy
loss for classification experiments, which is consistent with
previous works on NTK (Shu et al., 2022). We compare
our algorithm with previous baselines which also require
minimal model training between different batches and do
not incur significant extra computations. In particular, we
compare with random selection, K-MEANS++ (Arthur &
Vassilvitskii), BADGE (Ash et al., 2020), and MLMOC
(Mohamadi et al., 2022). The former two algorithms, like
our algorithm, can select all the points in a single batch,
whereas the latter two are not designed for such a setting
but are applicable after modifications. Some experimental
details are deferred to App. G due to space limitation.

5.1. Correlations Between σ2
NTKGP and Neural Network

Output Variance

Here we study whether our approximate output variance
σ2

NTKGP (Sec. 3.1) can accurately reflect the output variance
of NNs (w.r.t. the random initializations) and hence the ini-

Figure 2. Correlation between our approximate output variance
σ2

NTKGP(x|X) and the empirical NN output variance. The full
description of the graph is given in App. H.1.

Protein

Figure 3. Results of sequential data selection in regression tasks
(discussed in Sec. 5.2 and detailed descriptions in App. H.1).

tialization robustness. Fig. 2 plots the individual variance
predicted by our NTKGP (i.e., σ2

NTKGP(x|X) for some x and
X) against the empirically observed output variance result-
ing from different random initializations. The figure verifies
that σ2

NTKGP is highly correlated with the observed output
variance of the NN and the variances are generally confined
within some region, which provides an empirical corrob-
oration for our Theorem 3.1. This justifies our choice of
using σ2

NTKGP to measure the output variance w.r.t. the model
initializations and hence the initialization robustness. In ad-
dition, we present further experimental results to show that
the output variance predicted using sparse GP approxima-
tions, which is more computationally efficient (Sec. 3.1.1),
is also highly correlated with the observed output variance.

5.2. Experiments on Regression Tasks

Here we evaluate our EV-GP criterion3 (Sec. 3.3) using
regression tasks. In the experiments here, each algorithm is
given an unlabelled pool of data and no initial labelled data,
and all methods use a 2-layer MLP with ReLU activation.

In Fig. 3, our EV-GP criterion is used to sequentially select
the data points (i.e. the batch size is 1). In the first column of
Fig. 3, we plot the 90th percentile output variance (i.e. 90%
of the test points have lower output variance than this value)
as the vertical axis, against the values of our EV-GP cri-
terion as the horizontal axis. The gray dots show that our
EV-GP criterion is highly correlated with output variance,
and the blue dots, which display the points selected by our

3When reporting the value αEV, we will ignore the σ2
NN(x|∅)

terms and instead report the average of −σ2
NN(x|X).

Training-Free Neural Active Learning with Initialization-Robustness Guarantees

EV-GP criterion during active learning, demonstrate that
our EV-GP criterion is able to select points which lead to
low output variance (since the selected points are mostly
clustered in the bottom right corner). This is also corrob-
orated by the middle column of Fig. 3, which shows that
sequentially maximizing our EV-GP criterion indeed leads
to the selection points which progressively reduce the output
variance, and our EV-GP criterion consistently outperform
random search. The third column of Fig. 3 shows that the
points selected by maximizing our EV-GP criterion also
sequentially reduce the test MSE and hence improve the
predictive performance of the NN. Therefore, the second
and third columns of Fig. 3 combine to provide an empirical
justification for our Theorem 3.3, which has theoretically
shown that minimizing the approximate output variance
σNTKGP (which is achieved by maximizing our EV-GP cri-
terion) also improves the generalization performance of
overparameterized NNs.

We have also tested our EV-GP criterion in the more prac-
tical active learning setting where a batch of points are
selected in every round (with a batch size of 20). Fig. 4
shows that in the batch setting, our EV-GP criterion is still
able select batches of points which lead to both low output
variance (first column) and small test error (second column),
and outperforms the other baselines. We include more exper-
imental results for the regression tasks in App. H.3, which
are consistent with those shown here (Fig. 3 and Fig. 4). A
particularly interesting additional result is Fig. 12, which
shows that an easier regression task leads to a larger degree
of correlation between the output variance and the test error.
This, interestingly, is consistent with Theorem 3.3, because
it has theoretically shown that an easier task (i.e., a simpler
groundtruth function which is indicated by a smaller B)
reduces the value of ζ on the right hand side of Theorem 3.3,
which consequently increases the degree of correlation be-
tween the output variance (i.e., right hand side) and the
generalization error (i.e., left hand side).

5.3. Experiments on Classification Tasks

Here we apply our EV-GP criterion to classification tasks.
We use a wider variety of NN architectures, including
MLPs (ReLU activation), convolutional NNs (CNNs), and
WideResNets (Zagoruyko & Komodakis) which has also
been used in experiments of Mohamadi et al. (2022).

Performance Comparison. Fig. 5(a-b) presents the com-
parison of our EV-GP criterion with other baselines, in
which all methods use MLPs. The figures show that our
EV-GP criterion is indeed able to select points which lead
to both initialization robustness (i.e., low output entropy
plotted in the first column) and good generalization per-
formances (i.e., high test accuracy shown in the second
column). The results are consistent with those for the re-

Robot Kinematics

Protein

Figure 4. Results on regression tasks. Left: output variance of
test predictions after training using the labelled active set. Right:
test MSE. The x-axis represents the size of the selected active set.
More details about the metrics are in App. G.3.

gression tasks (Sec. 5.2). Moreover, our EV-GP criterion
outperforms the other baselines in Fig. 5(a-b), especially in
the earlier rounds when there is a small number of selected
points. Fig. 5(c-d) plots the results using more sophisticated
NN architectures (i.e., CNNs and WideResNets), in which
our EV-GP criterion also consistently outperforms the other
baselines in terms of the test accuracy. Further experimental
results are also provided in App. H.4.1.

Effects of the Batch Size. Here we examine the impact
of the batch size on the performances of different active
learning algorithms, by fixing the total query budget and
varying the batch size. The results in Fig. 6 show that
EV-GP-EMP (which uses the empirical NTK) is minimally
affected by the increasing batch size4. This is reasonable
because these algorithms do not require the labels, therefore,
a smaller batch size (i.e., more frequent availability of the
labels) has no impact on the performance. In contrast, when
the batch size is increased, MLMOC experiences a large
drop in performance for both datasets and the performance
of BADGE is significantly decreased for MNIST. This may
be mainly attributed to their reliance on the labels, because a
larger batch size reduces the frequency of the availability of,
and hence their abilities to use, labels. Moreover, another
factor which causes the detrimental effect of a larger batch
size on MLMOC is that a larger batch size is likely to reduce
the diversity of the selected points (Mohamadi et al., 2022).

4We omit RANDOM, K-MEANS++ and EV-GP from the graph
since the selection algorithm is independent of batch size.

Training-Free Neural Active Learning with Initialization-Robustness Guarantees

(a) MNIST, 2-layer MLP (b) EMNIST, 3-layer MLP (c) EMNIST, 2-layer CNN (d) SVHN, WideResNet

Figure 5. Results of active learning on classification tasks using NNs. (a-b) the output entropy and mean test accuracy of test predictions
for experiments involving MLPs. (c-d) the mean test accuracy for experiments involving more complex models with convolutions. More
details about the metrics are provided in App. G.3.

MNIST (2-layer MLP) SVHN (WideResNet)

Figure 6. Results on classification with varying batch sizes.

Effects of the Network Width. We find that using a wider
NN at training time improves both the model accuracy and
initialization robustness, while increasing the width of the
NN for active learning (i.e., data selection) only affects the
initialization robustness yet has negligible effects on the
resulting model accuracy. We explore these results further
in App. H.4.3.

5.4. Active Learning with Model Selection

Here we evaluate the effect of our model selection algorithm
(Sec. 4), by comparing the performance of our EV-GP+MS
algorithm (with model selection) with that of our EV-GP
algorithm using a fixed model architecture (2-layer MLP
with ReLU activation). The left figure in Fig. 7 shows that
for some datasets for which the fixed architecture already
leads to a good performance, our EV-GP+MS with model
selection is able to perform on par with that of EV-GP
with the fixed architecture. For some other datasets where
the fixed architecture is not adequate (e.g. when a deeper
model or a different activation function can better model
the data), our EV-GP+MS is able to discover a better model
architecture and hence achieve a lower loss (the right figure
in Fig. 7). We provide further discussions and additional
results for EV-GP+MS in App. H.5.

Robot Kinematics Naval

Figure 7. Results of EV-GP+MS compared to EV-GP on a fixed
model architecture (2-layer MLP with ReLU activation).

6. Related Works
The existing works on active learning are usually based on ei-
ther diversity or uncertainty. Diversity-based active learning
algorithms aim to select a diverse subset of data, in which
the diversity of the data is measured based on a discrimi-
nator (Gissin & Shalev-Shwartz, 2019; Sinha et al., 2019;
Kim et al., 2020), using the degree to which they match with
the other unlabelled data (Chattopadhyay et al., 2012; Shui
et al., 2020), or based on some latent representation (Sener &
Savarese, 2018; Ash et al., 2020). Uncertainty-based active
learning algorithms select the unlabelled data based on how
uncertain the trained model is about their predictions, in
which the uncertainty can be captured through the softmax
output (Ranganathan et al., 2017; He et al., 2019) or using a
Bayesian NN (Gal et al., 2017; Kirsch et al., 2019; 2021). In
addition, some previous works on active learning have also
combined both diversity and uncertainty for data selection
(Ash et al., 2020; Prabhu et al., 2021). Some works have im-
proved the efficiency of neural active learning by estimating
the performance of the NNs using computationally efficient
proxies, such as an NN with a smaller size (Coleman et al.,
2020) and metrics based on the theory of NTKs (Wang et al.,
2021a;b; Mohamadi et al., 2022).

7. Conclusion
We have introduced a computationally efficient and theoret-
ically grounded criterion for neural active learning, which

Training-Free Neural Active Learning with Initialization-Robustness Guarantees

can lead to the selection of points that result in both initial-
ization robustness and good generalization performances.
Extensive empirical results have shown that our criterion is
highly correlated to both the initialization robustness and
generalization error, and that it consistently outperforms
existing baselines. An interesting future direction is to in-
corporate our algorithm to select the initial points for other
neural active learning algorithms to further enhance their
performances, because our algorithm has shown impressive
performances in scenarios with limited initial labelled data.

References
Arora, S., Du, S. S., Hu, W., Li, Z., Salakhutdinov, R.,

and Wang, R. On Exact Computation with an Infinitely
Wide Neural Net. arXiv:1904.11955 [cs, stat], November
2019.

Arthur, D. and Vassilvitskii, S. K-means++: The Advan-
tages of Careful Seeding. pp. 11.

Ash, J. T., Zhang, C., Krishnamurthy, A., Langford, J., and
Agarwal, A. Deep Batch Active Learning by Diverse,
Uncertain Gradient Lower Bounds. arXiv:1906.03671
[cs, stat], February 2020.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary,
C., Maclaurin, D., Necula, G., Paszke, A., VanderPlas, J.,
Wanderman-Milne, S., and Zhang, Q. JAX: Composable
transformations of Python+NumPy programs, 2018.

Chattopadhyay, R., Wang, Z., Fan, W., Davidson, I., Pan-
chanathan, S., and Ye, J. Batch Mode Active Sampling
based on Marginal Probability Distribution Matching.
KDD : proceedings / International Conference on Knowl-
edge Discovery & Data Mining. International Conference
on Knowledge Discovery & Data Mining, 2012:741–749,
2012. ISSN 2154-817X. doi: 10.1145/2339530.2339647.

Chowdhury, S. R. and Gopalan, A. On kernelized multi-
armed bandits. In Proc. ICML, pp. 844–853, 2017.

Cohen, G., Afshar, S., Tapson, J., and van Schaik, A.
EMNIST: an extension of MNIST to handwritten let-
ters, March 2017. URL http://arxiv.org/abs/
1702.05373. arXiv:1702.05373 [cs].

Coleman, C., Yeh, C., Mussmann, S., Mirzasoleiman, B.,
Bailis, P., Liang, P., Leskovec, J., and Zaharia, M. Selec-
tion via Proxy: Efficient Data Selection for Deep Learn-
ing, October 2020.

Cyr, E. C., Gulian, M. A., Patel, R. G., Perego, M., and
Trask, N. A. Robust Training and Initialization of Deep
Neural Networks: An Adaptive Basis Viewpoint, Decem-
ber 2019.

Deng, L. The MNIST Database of Handwritten Digit Im-
ages for Machine Learning Research. IEEE Signal Pro-
cessing Magazine, 29(6):141–142, 2012.

Dua, D. and Graff, C. UCI Machine Learning Repository.
https://archive.ics.uci.edu/ml.

Esteva, A., Robicquet, A., Ramsundar, B., Kuleshov, V.,
DePristo, M., Chou, K., Cui, C., Corrado, G., Thrun,
S., and Dean, J. A guide to deep learning in healthcare.
Nature Medicine, 25(1):24–29, January 2019. ISSN 1546-
170X. doi: 10.1038/s41591-018-0316-z. URL https:
//doi.org/10.1038/s41591-018-0316-z.

Gal, Y., Islam, R., and Ghahramani, Z. Deep Bayesian
Active Learning with Image Data. arXiv:1703.02910 [cs,
stat], March 2017.

Gissin, D. and Shalev-Shwartz, S. Discriminative Active
Learning, July 2019.

Glorot, X. and Bengio, Y. Understanding the difficulty
of training deep feedforward neural networks. In Pro-
ceedings of the Thirteenth International Conference on
Artificial Intelligence and Statistics, pp. 249–256. JMLR
Workshop and Conference Proceedings, March 2010.

He, B., Lakshminarayanan, B., and Teh, Y. W. Bayesian
Deep Ensembles via the Neural Tangent Kernel.
arXiv:2007.05864 [cs, stat], October 2020.

He, T., Jin, X., Ding, G., Yi, L., and Yan, C. Towards Better
Uncertainty Sampling: Active Learning with Multiple
Views for Deep Convolutional Neural Network. In 2019
IEEE International Conference on Multimedia and Expo
(ICME), pp. 1360–1365, Shanghai, China, July 2019.
IEEE. ISBN 978-1-5386-9552-4. doi: 10.1109/ICME.
2019.00236.

Hoang, T. N., Hoang, Q. M., and Low, B. K. H. A Uni-
fying Framework of Anytime Sparse Gaussian Process
Regression Models with Stochastic Variational Inference
for Big Data. In Proceedings of the 32nd International
Conference on Machine Learning, pp. 569–578. PMLR,
June 2015.

Jacot, A., Gabriel, F., and Hongler, C. Neural Tangent Ker-
nel: Convergence and Generalization in Neural Networks.
arXiv:1806.07572 [cs, math, stat], February 2020.

Kassraie, P. and Krause, A. Neural Contextual Bandits
without Regret. In Proceedings of The 25th International
Conference on Artificial Intelligence and Statistics, pp.
240–278. PMLR, May 2022.

Kim, K., Park, D., Kim, K. I., and Chun, S. Y. Task-Aware
Variational Adversarial Active Learning, December 2020.

http://arxiv.org/abs/1702.05373
http://arxiv.org/abs/1702.05373
https://doi.org/10.1038/s41591-018-0316-z
https://doi.org/10.1038/s41591-018-0316-z

Training-Free Neural Active Learning with Initialization-Robustness Guarantees

Kirsch, A., van Amersfoort, J., and Gal, Y. BatchBALD: Ef-
ficient and Diverse Batch Acquisition for Deep Bayesian
Active Learning. arXiv:1906.08158 [cs, stat], October
2019.

Kirsch, A., Rainforth, T., and Gal, Y. Test Distribution-
Aware Active Learning: A Principled Approach Against
Distribution Shift and Outliers, November 2021.

Koh, P. W. and Liang, P. Understanding Black-box Pre-
dictions via Influence Functions. arXiv:1703.04730 [cs,
stat], December 2020.

Kohavi, R. A study of cross-validation and bootstrap for
accuracy estimation and model selection. In Proceedings
of the 14th international joint conference on Artificial
intelligence - Volume 2, IJCAI’95, pp. 1137–1143, San
Francisco, CA, USA, August 1995. Morgan Kaufmann
Publishers Inc. ISBN 978-1-55860-363-9.

Krause, A. and Guestrin, C. Nonmyopic active learn-
ing of Gaussian processes: An exploration-exploitation
approach. In Proceedings of the 24th International
Conference on Machine Learning, ICML ’07, pp. 449–
456, New York, NY, USA, June 2007. Association for
Computing Machinery. ISBN 978-1-59593-793-3. doi:
10.1145/1273496.1273553.

Krause, A., Singh, A., and Guestrin, C. Near-Optimal Sen-
sor Placements in Gaussian Processes: Theory, Efficient
Algorithms and Empirical Studies. The Journal of Ma-
chine Learning Research, 9:235–284, June 2008. ISSN
1532-4435.

Krizhevsky, A. Learning Multiple Layers of Features from
Tiny Images.

Lee, J., Xiao, L., Schoenholz, S. S., Bahri, Y., Novak, R.,
Sohl-Dickstein, J., and Pennington, J. Wide Neural Net-
works of Any Depth Evolve as Linear Models Under
Gradient Descent. Journal of Statistical Mechanics: The-
ory and Experiment, 2020(12):124002, December 2020.
ISSN 1742-5468. doi: 10.1088/1742-5468/abc62b.

Maaten, L. v. d. and Hinton, G. Visualizing data
using t-SNE. 9(86):2579–2605. ISSN 1533-
7928. URL http://jmlr.org/papers/v9/
vandermaaten08a.html.

Mirzasoleiman, B., Badanidiyuru, A., Karbasi, A., Von-
drak, J., and Krause, A. Lazier Than Lazy Greedy,
November 2014. URL http://arxiv.org/abs/
1409.7938. arXiv:1409.7938 [cs].

Mohamadi, M. A., Bae, W., and Sutherland, D. J. Making
Look-Ahead Active Learning Strategies Feasible with
Neural Tangent Kernels. In Advances in Neural Informa-
tion Processing Systems, volume 35, 2022.

Neal, B., Mittal, S., Baratin, A., Tantia, V., Scicluna, M.,
Lacoste-Julien, S., and Mitliagkas, I. A Modern Take on
the Bias-Variance Tradeoff in Neural Networks, Decem-
ber 2019.

Nemhauser, G. L., Wolsey, L. A., and Fisher, M. L. An
analysis of approximations for maximizing submodular
set functions—I. Mathematical Programming, 14(1):265–
294, December 1978. ISSN 0025-5610, 1436-4646. doi:
10.1007/BF01588971.

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B.,
and Ng, A. Y. Reading Digits in Natural Images with
Unsupervised Feature Learning.

Novak, R., Xiao, L., Hron, J., Lee, J., Alemi, A. A., Sohl-
Dickstein, J., and Schoenholz, S. S. Neural Tangents: Fast
and Easy Infinite Neural Networks in Python, December
2019.

Prabhu, V., Chandrasekaran, A., Saenko, K., and Hoffman,
J. Active Domain Adaptation via Clustering Uncertainty-
weighted Embeddings, October 2021.

Quiñonero-Candela, J. and Rasmussen, C. E. A Unifying
View of Sparse Approximate Gaussian Process Regres-
sion. Journal of Machine Learning Research, 6(65):1939–
1959, 2005. ISSN 1533-7928.

Ranganathan, H., Venkateswara, H., Chakraborty, S., and
Panchanathan, S. Deep active learning for image clas-
sification. In 2017 IEEE International Conference
on Image Processing (ICIP), pp. 3934–3938, Beijing,
September 2017. IEEE. ISBN 978-1-5090-2175-8. doi:
10.1109/ICIP.2017.8297020.

Rasmussen, C. E. and Williams, C. K. I. Gaussian Pro-
cesses for Machine Learning. Adaptive Computation and
Machine Learning. MIT Press, Cambridge, Mass, 2006.
ISBN 978-0-262-18253-9.

Ren, P., Xiao, Y., Chang, X., Huang, P.-Y., Li, Z., Gupta,
B. B., Chen, X., and Wang, X. A Survey of Deep Active
Learning. arXiv:2009.00236 [cs, stat], December 2021.

Sener, O. and Savarese, S. Active Learning for Con-
volutional Neural Networks: A Core-Set Approach.
arXiv:1708.00489 [cs, stat], June 2018.

Shu, Y., Cai, S., Dai, Z., Ooi, B. C., and Low, B. K. H. NASI:
Label- and Data-Agnostic Neural Architecture Search at
Initialization. pp. 25, 2022.

Shui, C., Zhou, F., Gagné, C., and Wang, B. Deep Active
Learning: Unified and Principled Method for Query and
Training. In Proceedings of the Twenty Third Interna-
tional Conference on Artificial Intelligence and Statistics,
pp. 1308–1318. PMLR, June 2020.

http://jmlr.org/papers/v9/vandermaaten08a.html
http://jmlr.org/papers/v9/vandermaaten08a.html
http://arxiv.org/abs/1409.7938
http://arxiv.org/abs/1409.7938

Training-Free Neural Active Learning with Initialization-Robustness Guarantees

Sinha, S., Ebrahimi, S., and Darrell, T. Variational Adver-
sarial Active Learning, October 2019.

Vakili, S., Bouziani, N., Jalali, S., Bernacchia, A., and Shiu,
D.-s. Optimal Order Simple Regret for Gaussian Process
Bandits. arXiv:2108.09262 [cs, stat], August 2021a.

Vakili, S., Bromberg, M., Garcia, J., Shiu, D.-s., and Bernac-
chia, A. Uniform Generalization Bounds for Overparam-
eterized Neural Networks. arXiv:2109.06099 [cs, stat],
October 2021b.

Wang, H., Huang, W., Tong, H., Margenot, A. J., and He, J.
Deep Active Learning by Leveraging Training Dynamics.
September 2021a.

Wang, Z., Awasthi, P., Dann, C., Sekhari, A., and Gentile, C.
Neural Active Learning with Performance Guarantees. In
Advances in Neural Information Processing Systems, vol-
ume 34, pp. 7510–7521. Curran Associates, Inc., 2021b.

Zagoruyko, S. and Komodakis, N. Wide residual networks.
URL http://arxiv.org/abs/1605.07146.

http://arxiv.org/abs/1605.07146

Training-Free Neural Active Learning with Initialization-Robustness Guarantees

A. Proof of Theorem 3.1
In this section, we will show that the output variance of neural networks with ReLU activation can be represented using
σNTKGP. For notation, we will let ∥ · ∥p represent the Lp-norm of a vector or matrix. When p is unspecified, we assume that
we are referring to the L2-norm.

A.1. Dual Activations

In this subsection, we first define the concept of dual activation functions (Lee et al., 2020).

Definition A.1. Let ϕ : R→ R be an activation function. Then, the dual activation function of ϕ is given by ϕ̌ : R2×2 → R
where

ϕ̌(Λ) = E(u,v)∼N (0,Λ)[ϕ(u)ϕ(v)].

Similarly, if we let ϕ′(x) =
dϕ(x)

dx
be the derivative of the activation function, then its dual activation ϕ̌′ is defined as

ϕ̌′(Λ) = E(u,v)∼N (0,Λ)[ϕ
′(u)ϕ′(v)].

A.2. Neural Network Assumption

We make an assumption about the parametrisation of our neural network. We use a common parametrisation from other
NTK-related works, which can be found in e.g., Lee et al. (2020).

Assumption A.2. Assume f(·; θ) is a multilayer perceptron with L hidden layers each with width of k1, k2, . . . , kL. For
simplicity we assume that all hidden layers have the same width. Let the input dimension of the neural network is k0 and the
output dimension is kL+1. Let the neural network be parametrised as

h(0)(x) = x

h(ℓ)(x) =
1√
kℓ

ϕ
(
W (ℓ)h(ℓ−1)(x) + b(ℓ)

)
for ℓ ∈ [1, . . . , L]

f(x) = W (L+1)h(L)(x) + b(L+1)

where W
(ℓ)
ij ∼ N (0, σ2

W) and b
(ℓ)
ij ∼ N (0, σ2

b) are model weights and biases initialized randomly from a Gaussian

distribution with variances σ2
W and σ2

b respectively, and ϕ is an activation function which is scaled so that ϕ̌
([

1 1
1 1

])
= 1.

There are two main changes from the standard neural network assumption.

1. The difference in the parametrisation of the hidden layer, where a multiplicative factor of
1√
kℓ

has been added. This

simplifies the computation of expectation values.

2. The scaling of the activation function. In our case, we scale the activation function ϕ such that its dual activation output
is fixed under a specific input. This is an additional assumption not applied in Lee et al. (2020), and is done here to
simplify the computation when we have to repeatedly apply the activation function.

A.3. Relationship between K and Θ

We first present the relationship between K and Θ. The following lemma is also presented and proven in Jacot et al. (2020).

Lemma A.3. For a neural network in the infinite-width regime, K and Θ can be defined recursively as

K(0)(x, x′) = x⊤x′ + σ2
b (12)

Θ(0)(x, x′) = 0 (13)

K(ℓ)(x, x′) = ϕ̌

([
K(ℓ−1)(x, x) K(ℓ−1)(x, x′)
K(ℓ−1)(x′, x) K(ℓ−1)(x′, x′)

])
+ σ2

b ℓ ∈ [1, · · · , L+ 1] (14)

Θ(ℓ)(x, x′) = K(ℓ)(x, x′) + Θ(ℓ−1)(x, x′) · K̇(ℓ−1)(x, x′) ℓ ∈ [1, · · · , L+ 1] (15)

Training-Free Neural Active Learning with Initialization-Robustness Guarantees

where we define

K̇(ℓ)(x, x′) = ϕ̌′
([
K(ℓ)(x, x) K(ℓ)(x, x′)
K(ℓ)(x′, x) K(ℓ)(x′, x′)

])
(16)

Notice that (15) gives a recursive formula for computing Θ. If we “unroll” this formula, we will obtain

Θ(x, x′) =

L+1∑
ℓ=1

K(ℓ)(x, x′)

L+1∏
ℓ′=ℓ+1

K̇(ℓ′)(x, x′). (17)

Given (17), it is now simple to bound Θ(x, x′), since all that is required is to provide bounds for each K(ℓ) and K̇(ℓ)

individually. This can be done by inspecting the dual activation functions.

A.4. Properties of ReLU Dual Activation Functions

For the remainder of this section, we will consider the case where the activation function is the scaled ReLU function, defined

as ϕ(x) =
√
2 ·max(x, 0). Based on Lee et al. (2020), it can be shown that for ReLU activations, if Λ =

[
x⊤x x⊤y
y⊤x y⊤y

]
,

then
ϕ̌(Λ) =

1

π
∥x∥∥y∥

(
sin θ + (π − θ) cos θ

)
and

ϕ̌′(Λ) =
π − θ

π

where θ = arccos
(

x⊤y
∥x∥∥y∥

)
. Notice that the ReLU activation in this case has a

√
2 multiplicative factor, which scales the

activation as required from above.

For convenience, define the function ρ : [−1, 1]→ R where

ρ(r) = ϕ̌

([
1 r
r 1

])
=

1

π

(√
1− r2 + (π − arccos r) · r

)
. (18)

This can be thought of as the re-parametrisation of the dual activation function ϕ in the case where ∥x∥ = ∥y∥ = 1, and we
are only specifying the cosine distance r = cos θ between x and y. We can also define ρ′ to be a similar function but on the
dual activation ϕ̌′ instead,

ρ′(r) = ϕ̌′
([

1 r
r 1

])
=

π − arccos r

π
. (19)

It is simple to verify that for ReLU activations,

ϕ̌

([
∥x∥2 ∥x∥∥y∥ · r

∥x∥∥y∥ · r ∥y∥2
])

= ∥x∥∥y∥ · ρ(r) (20)

and

ϕ̌′
([

∥x∥2 ∥x∥∥y∥ · r
∥x∥∥y∥ · r ∥y∥2

])
= ρ′(r). (21)

For any function f , we define a notation fm(x) = (f ◦ f ◦ · · · ◦ f)︸ ︷︷ ︸
m times

(x). This is thought as repeatedly applying function f to

the input value m times. For our dual activation function, we can show that repeating the function input will still result in a
non-decreasing function.

Lemma A.4. For any n ∈ N, ρn(r) is non-decreasing with respect to r.

Proof. We can prove this by induction. For the case that n = 1, it is simple to see that

dρ

dr
=

π − arccos r

π
. (22)

Training-Free Neural Active Learning with Initialization-Robustness Guarantees

We can see that arccos r ≤ π, and so
dρ

dr
≥ 0. This means that ρ is non-decreasing.

Furthermore, we are able to see that ρ(−1) = 0 and ρ(1) = 1. Since the function is non-decreasing, this means for any
r ∈ [−1, 1], it is the case that ρ(r) ∈ [0, 1] ⊂ [−1, 1].

Now, assume that ρn is non-decreasing. Let r1, r2 ∈ [−1, 1]. If r1 ≤ r2, then it is the case that ρn(r1) ≤ ρn(r2). Since we
know ρn(r1), ρ

n(r2) ∈ [−1, 1], we can therefore conclude that ρn+1(r1) ≤ ρn+1(r2).

Similarly, we can show a similar claim for the dual activation with respect to ϕ′. Note that for ϕ′, we do not need to show
that repeated application of the function keeps the output non-decreasing.

Lemma A.5. ρ′ is non-decreasing with respect to r.

Proof. It is simple to see that
dρ′

dr
=

1

π
√
1− r2

. (23)

Since square roots are always positive, it follows that dρ′/dr ≥ 0. This means that ρ′ is an increasing function.

A.5. Bounding K in terms of ρ

We will first show the relationship between K and ρ.

Lemma A.6. For ℓ ∈ [1, . . . , L+ 1],

K(ℓ)(x, x′) =
√
u(ℓ−1) · ρ

(
r(ℓ)u

)
+ σ2

b (24)

where u(ℓ) =
(
∥x∥2 + ℓσ2

b

)(
∥x′∥2 + ℓσ2

b

)
and r

(ℓ)
u =

K(ℓ−1)(x, x′)√
u(ℓ−1)

.

Proof. We can prove this by induction. In the case that ℓ = 1, we see that

K(1)(x, x′) = ϕ̌

([
K(0)(x, x) K(0)(x, x′)
K(0)(x′, x) K(0)(x′, x′)

])
+ σ2

b (25)

= ϕ̌

([
∥x∥2 x⊤x′

x⊤x′ ∥x′∥2
])

+ σ2
b (26)

= ∥x∥∥x′∥ · ρ

(
x⊤x′

∥x∥∥x′∥

)
+ σ2

b (27)

For the inductive step, assume that K(ℓ)(x, x′) =
√
u(ℓ−1) · ρ

(
r
(ℓ)
u

)
+ σ2

b holds. Then, we see that

K(ℓ+1)(x, x′) = ϕ̌

([
K(ℓ)(x, x) K(ℓ)(x, x′)
K(ℓ)(x′, x) K(ℓ)(x′, x′)

])
+ σ2

b (28)

= ϕ̌

([(
∥x∥2 + (ℓ− 1)σ2

b

)
ρ(1) + σ2

b K(ℓ)(x, x′)
K(ℓ)(x′, x)

(
∥x′∥2 + (ℓ− 1)σ2

b

)
ρ(1) + σ2

b

])
+ σ2

b (29)

= ϕ̌

([
∥x∥2 + ℓσ2

b K(ℓ)(x, x′)
K(ℓ)(x′, x) ∥x′∥2 + ℓσ2

b

])
+ σ2

b (30)

=
√
u(ℓ) · ρ

(
K(ℓ)(x, x′)√

u(ℓ)

)
+ σ2

b (31)

where we use the fact that K(ℓ)(x, x′) ≤
√
K(ℓ)(x, x) · K(ℓ)(x′, x′). This proves the inductive step.

The next proofs will attempt to bound the values of K(ℓ)(x, x′) based on ρ.

Training-Free Neural Active Learning with Initialization-Robustness Guarantees

Lemma A.7.
ρ̃
(ℓ)
− ≤ K(ℓ)(x, x′) ≤ ρ̃

(ℓ)
+ (32)

where

ρ̃
(ℓ)
± =

±∥x∥∥x′∥ if ℓ = 0,

√
u(ℓ−1) · ρ

(
ρ̃
(ℓ−1)
±√
u(ℓ−1)

)
+ σ2

b if ℓ ≥ 1.
(33)

Proof. We can prove so by inspecting result from Lemma A.6, and using proof by induction. In the case that ℓ = 1,

K(1)(x, x′) = ∥x∥∥x′∥ · ρ

(
x⊤x′

∥x∥∥x′∥

)
+ σ2

b (34)

then it is simple to show our claim in this case from the fact that −∥x∥∥x′∥ ≤ x⊤x′ ≤ ∥x∥∥x′∥ and that ρ is monotone.

For the inductive step, assume that the claim is true for ℓ. We see that

K(ℓ+1)(x, x′) =
√
u(ℓ) · ρ

(
K(ℓ)(x, x′)√

u(ℓ)

)
+ σ2

b (35)

≤
√

u(ℓ) · ρ

(
ρ̃
(ℓ)
+√
u(ℓ)

)
+ σ2

b (36)

which uses the fact that ρ is non-decreasing. A similar logic can be used to show the lower bound. This proves the inductive
step and hence proves our lemma.

Corollary A.8. For all ℓ ∈ [1, . . . , L+ 1],√
u(ℓ−1) · ρ

(
r̂
(ℓ)
−
)
+ σ2

b ≤ K(ℓ)(x, x′) ≤
√
u(ℓ−1) · ρ

(
r̂
(ℓ)
+

)
+ σ2

b (37)

where
r̂
(ℓ)
+ = 1 (38)

and

r̂
(ℓ)
− =

−1 if ℓ = 1,

ρ
(
r̂
(ℓ−1)
−

)
· ℓ− 2

ℓ− 1
if ℓ > 1

(39)

Proof. Notice that by Lemma A.7 and due to the non-decreasing nature of ρ, proving the corollary above is equivalent to

showing that
ρ̃
(ℓ−1)
+√
u(ℓ−1)

≤ r
(ℓ)
+ and

ρ̃
(ℓ−1)
−√
u(ℓ−1)

≥ r
(ℓ)
− .

We will start by showing that
ρ̃
(ℓ−1)
+√
u(ℓ−1)

≤ r
(ℓ)
+ = 1. It is simple to show that the statement is true for ℓ = 1. In the case that

ℓ > 1, since ρ(r) ≤ 1 for all r, we can show that(
ρ̃
(ℓ−1)
+

)2
u(ℓ−1)

≤
(√

u(ℓ−2) + σ2
b

)2
u(ℓ−1)

(40)

=

(
∥x∥+ (ℓ− 2)σ2

b

)(
∥x′∥+ (ℓ− 2)σ2

b

)
+ σ2

b

√(
∥x∥+ (ℓ− 2)σ2

b

)(
∥x′∥+ (ℓ− 2)σ2

b

)
+ σ4

b(
∥x′∥+ (ℓ− 2)σ2

b

)
+ σ2

b

[(
∥x∥+ (ℓ− 2)σ2

b

)
+
(
∥x′∥+ (ℓ− 2)σ2

b

)]
+ σ4

b

(41)

≤ 1 (42)

from the inequality 2
√
ab ≤ a+ b. This therefore means

ρ̂
(ℓ−1)
+√
u(ℓ−1)

≤ 1. This proves the first part of the corollary.

Training-Free Neural Active Learning with Initialization-Robustness Guarantees

For the second part, we will prove so by induction. It is easy to show that the statement is true for ℓ = 1. For the inductive

step, consider some value of ℓ > 2, and assume that the statement holds for ℓ− 1, meaning that
ρ̃
(ℓ−2)
−√
u(ℓ−2)

≥ r
(ℓ−1)
− . Then,

we can see that

ρ̃
(ℓ−1)
−√
u(ℓ−1)

=

√
u(ℓ−2) · ρ

(
ρ̃
(ℓ−2)
−√
u(ℓ−2)

)
+ σ2

b

√
u(ℓ−1)

(43)

≥
√
u(ℓ−2) · ρ

(
r
(ℓ−1)
−

)
+ σ2

b√
u(ℓ−1)

(44)

≥ ρ
(
r
(ℓ−1)
−

)
·
√
u(ℓ−2) + σ2

b√
u(ℓ−1)

(45)

≥ ρ
(
r
(ℓ−1)
−

)
· ℓ− 2

ℓ− 1
(46)

= r
(ℓ)
− (47)

where in (46) we use the fact that

√
u(ℓ−2) + σ2

b√
u(ℓ−1)

≥
√
u(ℓ−2)

√
u(ℓ−1)

≥

√
∥x∥+ (ℓ− 2)σ2

b

∥x∥+ (ℓ− 1)σ2
b

·

√
∥x′∥+ (ℓ− 2)σ2

b

∥x′∥+ (ℓ− 1)σ2
b

≥ ℓ− 2

ℓ− 1
. (48)

This proves the second part of our corollary.

A.6. Bounding K̇ in terms of ρ

We will first show that we can express K̇ in terms of ρ′.

Lemma A.9. For ℓ ∈ [1, . . . , L+ 1],
K̇(ℓ)(x, x′) = ρ′

(
r(ℓ)u

)
(49)

where r
(ℓ)
u is defined in Lemma A.6.

Proof. We can show that

K̇(ℓ)(x, x′) = ϕ̌′
([
K(ℓ−1)(x, x) K(ℓ−1)(x, x′)
K(ℓ−1)(x′, x) K(ℓ−1)(x′, x′)

])
(50)

= ϕ̌′
([(
∥x∥2 + (ℓ− 2)σ2

b

)
ρ(1) + σ2

b K(ℓ−1)(x, x′)
K(ℓ−1)(x′, x)

(
∥x′∥2 + (ℓ− 2)σ2

b

)
ρ(1) + σ2

b

])
(51)

= ϕ̌′
([
∥x∥2 + (ℓ− 1)σ2

b K(ℓ−1)(x, x′)
K(ℓ−1)(x′, x) ∥x′∥2 + (ℓ− 1)σ2

b

])
(52)

= ρ′

(
K(ℓ−1)(x, x′)√

u(ℓ−1)

)
. (53)

Using the result above, we can now bound the values of K̇(ℓ)(x, x′).

Corollary A.10.
ρ′
(
r̂
(ℓ)
−
)
≤ K̇(ℓ)(x, x′) ≤ ρ′

(
r̂
(ℓ)
+

)
(54)

where r̂
(ℓ)
− and r̂

(ℓ)
+ are as defined in Corollary A.8.

Proof. From Corollary A.8, it is the case that r̂(ℓ)− ≤ r
(ℓ)
u ≤ r̂

(ℓ)
+ . The corollary then follows from this fact.

Training-Free Neural Active Learning with Initialization-Robustness Guarantees

A.7. Ratio between K and Θ

We will now prove the bound of the ratio between K and Θ.

Theorem A.11. For a neural network with L ≥ 2, if max
{
∥x∥, ∥x′∥

}
≤ B, then

1 +

L∑
ℓ=1

ρ
(
r̂
(ℓ)
−
)
· ℓ− 1

L+ 1

L+1∏
ℓ′=ℓ+1

ρ′
(
r̂
(ℓ′)
−
)
≤ Θ(x, x′)

K(x, x′)
≤ 1 +

L

ρ
(
r̂
(L+1)
−

) (55)

Proof. We will first prove the right hand inequality. We see that

Θ(x, x′)

K(x, x′)
=

1

K(L+1)(x, x′)
·
L+1∑
ℓ=1

K(ℓ)(x, x′)

L+1∏
ℓ′=ℓ+1

K̇(ℓ′)(x, x′) (56)

≤ 1 +

L∑
ℓ=1

√
u(ℓ−1) · ρ

(
r̂
(ℓ)
+

)
+ σ2

b√
u(L) · ρ

(
r̂
(L+1)
−

)
+ σ2

b

L+1∏
ℓ′≤ℓ+1

ρ′
(
r̂
(ℓ′)
+

)
(57)

= 1 +

L∑
ℓ=1

1

ρ
(
r̂
(L+1)
−

) · √u(ℓ−1) + σ2
b√

u(L)
(58)

≤ 1 +
L

ρ
(
r̂
(L+1)
−

) (59)

where we use the fact that

√
u(ℓ−1) + σ2

b√
u(L)

≤ 1 based on a similar argument used in (41).

Similarly for the left hand inequality,

Θ(x, x′)

K(x, x′)
≥ 1 +

L∑
ℓ=1

√
u(ℓ−1) · ρ

(
r̂
(ℓ)
−
)
+ σ2

b√
u(L) · ρ

(
r̂
(L+1)
+

)
+ σ2

b

L+1∏
ℓ′=ℓ+1

ρ′
(
r̂
(ℓ′)
−
)

(60)

≥ 1 +

L∑
ℓ=1

ρ
(
r̂
(ℓ)
−
)
·
√
u(ℓ−1)

√
u(L) + σ2

b

L+1∏
ℓ′=ℓ+1

ρ′
(
r̂
(ℓ′)
−
)

(61)

≥ 1 +

L∑
ℓ=1

ρ
(
r̂
(ℓ)
−
)
· ℓ− 1

L+ 1

L+1∏
ℓ′=ℓ+1

ρ′
(
r̂
(ℓ′)
−
)

(62)

where we use the fact that

√
u(ℓ−1)

√
u(L) + σ2

b

≥
√
u(ℓ−1)

√
u(L+1)

≥ ℓ− 1

L+ 1
based on a similar reasoning as (48). This proves our

theorem.

From Theorem A.12, we are therefore able to give a bound for the ratio between Θ and K. While the constant is defined
recursively based on the function ρ, we claim that this is still useful since the constants are expressed in a form which allows
it to be computed directly, and more importantly, we are able to see that such a constant will exist.

A.8. Ratio between K and Θ when σb = 0

In the case that there is no bias, we can improve the bound on the ratio between K and Θ. The key fact is that in the case
without bias, u(ℓ) is equal for all values of ℓ, and we can simplify ρ̂

(ℓ)
± = ∥x∥∥x′∥ · ρℓ(±1). During the computation, the

constants ∥x∥∥x′∥ will then cancel each other out.

Theorem A.12. For a neural network with L ≥ 2 and σb = 0,

L+1∑
ℓ=1

ρℓ(−1)
ρL+1(1)

L+1∏
ℓ′=ℓ+1

(ρ′ ◦ ρℓ
′
)(−1) ≤ Θ(x, x′)

K(x, x′)
≤

L+1∑
ℓ=1

ρℓ(1)

ρL+1(−1)

L+1∏
ℓ′=ℓ+1

(ρ′ ◦ ρℓ
′
)(1) (63)

Training-Free Neural Active Learning with Initialization-Robustness Guarantees

Proof. It is easy to see from the recursive form in (14) that if σb = 0, then K(ℓ)(x, x′) = ∥x∥∥x′∥ · ρℓ
(

x⊤x′

∥x∥∥x′∥

)
. Since

we know ρℓ is non-decreasing from Lemma A.4, we are able to bound

∥x∥∥x′∥ · ρℓ(−1) ≤ K(ℓ)(x, x′) ≤ ∥x∥∥x′∥ · ρℓ(1). (64)

Similarly, we can also see from (16) that K̇(ℓ)(x, x′) = (ρ′ ◦ ρℓ)
(

x⊤x′

∥x∥∥x′∥

)
. Since ρ′ is non-decreasing based on

Lemma A.5, we are able to bound
(ρ′ ◦ ρℓ)(−1) ≤ K̇(ℓ)(x, x′) ≤ (ρ′ ◦ ρℓ)(1). (65)

Given that we can write Θ(x, x′) with the recursive form given by (17), it is then simple to use (64) and (65) to bound
Θ(x, x′)

K(x, x′)
.

A.9. Alternate Numerical Method for Bounding Ratio Between K and Θ

Notice that the bounds that we have shown so far assume the worst case values of K and Θ. Instead, it should be possible to
rephrase the value of K in terms of magnitudes of x and x′ and their cosine distance, i.e. assume d = ∥x∥, d′ = ∥x′∥ and

r =
x⊤x′

d · d′
∈ [−1, 1], and let

K̃(ℓ)(d, d′, r) =

dd′r if ℓ = 0,√(

d+ (ℓ− 1)σ2
b

)(
d′ + (ℓ− 1)σ2

b

)
· ρ

(
K̃(ℓ−1)(d, d′, r)√(

d+ (ℓ− 1)σ2
b

)(
d′ + (ℓ− 1)σ2

b

)
)

+ σ2
b if ℓ ≥ 1,

(66)
and

˙̃K(ℓ)(d, d′, r) = ρ′

(
K̃(ℓ−1)(d, d′, r)√(

d+ (ℓ− 1)σ2
b

)(
d′ + (ℓ− 1)σ2

b

)
)

(67)

This formulation is possible since the dual activation ϕ̌ exhibits rotational symmetry. Then, it is simple to see that the bound
K(ℓ)(x, x′) by through numerical optimization problem

K(ℓ)(x, x′) ≥ min
d,d′∈[0,Bx]; r∈[−1,1]

K̃(ℓ)(d, d′, r) (68)

and
Θ(x, x′)

K(x, x′)
≥ min

d,d′∈[0,Bx]; r∈[−1,1]
1 +

L∑
ℓ=1

K̃(ℓ)(x, x′)

K̃(L+1)(x, x′)

L+1∏
ℓ′=ℓ+1

˙̃K(ℓ′)(d, d′, r) (69)

and equivalent expressions for the upper bound. Since ρ and ρ′ are expressed through differentiable functions, it should be
possible to use an algorithm such as gradient descent to find the minimum/maximum value of d, d′ and r which will give the
lower/upper bound of the desired ratio.

A.10. Bounding the Difference Between σNN and σNTKGP

From above, we are able to see that it is possible to bound the ratio

a− ≤
K(x, x′)

Θ(x, x′)
≤ a+ (70)

for some appropriately set a− and a+ according to either Theorem A.11 or Theorem A.12 depending on the value of σb

(note that in the two theorems above we show the bounds for the reciprocal of what is stated in (70)). Given this bound, we
are able to show the following main result.

Training-Free Neural Active Learning with Initialization-Robustness Guarantees

Theorem A.13 (Formal Version of Theorem 3.1). For a neural network with ReLU activation and L ≥ 2 hidden layers, if
ΘX ⪰ 0, then ∣∣σ2

NN(x|X)− α · σ2
NTKGP(x|X)

∣∣ ≤ β (71)

where n is the upper limit on the size of the training set, B ≥ |Θ(x, x′)|, α ∈ [a−, a+], γ = B ·max
{
α− a−, a+ − α

}
,

and β = γ +
nγB2

λmin(ΘX)2
+

2nγB

λmin(ΘX)
.

Proof. First, we know that we have
K(x, x′)

Θ(x, x′)
∈ [a−, a+] by assumption. In the case that Θ(x, x′) ≥ 0, we can convert the

multiplicative bound into an additive bound as

K(x, x′) ≥ a− ·Θ(x, x′) (72)
α ·Θ(x, x′)−K(x, x′) ≤ (α− a−) ·Θ(x, x′) (73)

≤ (α− a−) ·B (74)

and

K(x, x′) ≤ a+Θ(x, x′) (75)
K(x, x′)− α ·Θ(x, x′) ≤ (α− a+) ·Θ(x, x′) (76)

≤ (α− a+) ·B (77)
(78)

which can be combined to give
∣∣K(x, x′)−α·Θ(x, x′)

∣∣ ≤ γ for γ as defined earlier. The same is the case when Θ(x, x′) < 0.

Given this additive bound, we are then able to bound each term which appears in σNN individually. We can see that∣∣KxXΘ−1
X ΘXx − α ·ΘxXΘ−1

X ΘXx

∣∣ = ∣∣(KxX − α ·ΘxX
)
Θ−1

X ΘXx

∣∣ (79)

≤ λmax(Θ
−1
X)∥KXx − α ·ΘXx∥∥ΘXx∥ (80)

≤ 1

λmin(ΘX)
· γ
√
n ·B

√
n (81)

=
nγB

λmin(ΘX)
. (82)

Similarly, ∣∣ΘxXΘ−1
X KXΘ−1

X ΘXx − α ·ΘxXΘ−1
X ΘXx

∣∣ = ∣∣ΘxXΘ−1
X (KX − α ·ΘX)Θ−1

X ΘXx

∣∣ (83)

≤ λmax(KX − α ·ΘX)∥Θ−1
X ΘXx∥2 (84)

= λmax(KX − α ·ΘX) · λmax(Θ
−1
X)2 · ∥ΘXx∥2 (85)

≤ nγB2

λmin(ΘX)2
. (86)

Combining these results together, we obtain∣∣σ2
NN(x|X)− α · σ2

NTKGP(x|X)
∣∣ = ∣∣(Kx +ΘxXΘ−1

X KXΘ−1
X ΘXx −KxXΘ−1

X ΘXx −ΘxXΘ−1
X KXx

)
+

− α ·
(
Θx −ΘxXΘ−1

X ΘXx

)∣∣ (87)

≤
∣∣Kx − αΘx

∣∣+ ∣∣ΘxXΘ−1
X KXΘ−1

X ΘXx − αΘxXΘ−1
X ΘXx

∣∣
+
∣∣KxXΘ−1

X ΘXx − αΘxXΘ−1
X ΘXx

∣∣+ ∣∣ΘxXΘ−1
X KXx − αΘxXΘ−1

X ΘXx

∣∣
(88)

≤ γ +
nγB2

λmin(ΘX)2
+

2nγB

λmin(ΘX)
(89)

which proves our claim.

Training-Free Neural Active Learning with Initialization-Robustness Guarantees

A.11. Bounding the Ratio Between αEV using σNN and σNTKGP

It turns out that we are able to get a bound on the ratio of the EV criterion directly when we use σNN versus when we use
σNTKGP. Considering the case of a single test point, we can see that using σNN, the EV criterion gives

αEV,NN(x|X) = σ2
NN(x|∅)− σ2

NN(x|X) = 2 ·ΘxXΘ−1
X KXx −ΘxXΘ−1

X KXΘ−1
X ΘXx ≥ 0, (90)

and using σNTKGP,
αEV,NTKGP(x|X) = σ2

NTKGP(x|∅)− σ2
NTKGP(x|X) = ΘxXΘ−1

X ΘXx ≥ 0. (91)

Based on this, we are able to show the following bound.

Lemma A.14. Assume X is such that ΘX ,KX ⪰ 0. Let ∥ΘX ∥∞, ∥ΘXx∥∞ ≤ B and a− ≤
K(x, x′)

Θ(x, x′)
≤ a+. Then,

2a− · λmin(ΘX)

B
− a+B

λmin(ΘX)
≤ αEV,NN(x|X)

αEV,NTKGP(x|X)
≤ 2a+B

λmin(ΘX)
. (92)

Proof. For the right hand inequality, we can see that

αEV,NN(x|X)
αEV,NTKGP(x|X)

≤
2 ·ΘxXΘ−1

X KXx

ΘxXΘ−1
X ΘXx

(93)

≤
2 · λmax(Θ

−1
X)∥ΘXx∥∥KXx∥

λmin(Θ
−1
X)∥ΘXx∥2

(94)

=
2 · λmax(ΘX)∥KXx∥
λmin(ΘX)∥ΘXx∥

(95)

≤ 2a+B

λmin(ΘX)
. (96)

Meanwhile, for the left hand inequality,

αEV,NN(x|X)
αEV,NTKGP(x|X)

=
2 ·ΘxXΘ−1

X KXx

ΘxXΘ−1
X ΘXx

−
ΘxXΘ−1

X KXΘ−1
X ΘXx

ΘxXΘ−1
X ΘXx

(97)

≥
2 · λmin(Θ

−1
X)∥ΘXx∥∥KXx∥

λmax(Θ
−1
X)∥ΘXx∥2

−
λmax(KX)∥Θ−1

X ΘXx∥2

λmin(Θ
−1
X)∥Θ−1

X ΘXx∥2
(98)

≥
2 · λmin(Θ

−1
X)∥KXx∥

λmax(Θ
−1
X)∥ΘXx∥

− λmax(KX)

λmin(ΘX)
(99)

≥ 2 · λmin(ΘX)∥KXx∥
λmax(ΘX)∥ΘXx∥

− λmax(KX)

λmin(ΘX)
(100)

≥ 2 · λmin(ΘX) · a−
B

− a+B

λmin(ΘX)
(101)

which provides a lower bound.

This provides another method of showing the agreement when using σ2
NTKGP variance function for our criterion compared to

using σ2
NN variance function.

B. Proof of Theorem 3.3
In this section we will state Theorem B.1 more formally and proceed to prove it.

Theorem B.1 (Formal version of Theorem 3.3). Let the function f∗ ∈ HΘ and training set (X ,y) follow Assumption 3.2.
Suppose we train an infinitely wide neural network f(·; θ) with training dataset (X ,y) and mean-squared error loss function

Training-Free Neural Active Learning with Initialization-Robustness Guarantees

as given by (1), using gradient descent until convergence. Then, for any x ∈ X , with probability at least 1− 2δ over the
random observation noise and network initialization,

∣∣f∗(x)− f(x; train(θ0))
∣∣ ≤ [B +

(
R

λ
+ 1

)√
2 log δ−1

]
σNTKGP(x|X) (102)

where λ is the regularization of the loss function.

Proof. By the triangle inequality, we can show that∣∣f∗(x)− f(x; train(θ0))
∣∣ ≤ ∣∣f∗(x)− µ(x|X)

∣∣︸ ︷︷ ︸
1⃝

+
∣∣µ(x|X)− f(x; θ∞)

∣∣︸ ︷︷ ︸
2⃝

(103)

≤
(
B +

R

λ

√
2 log δ−1

)
σNTKGP(x|X) +

∣∣µ(x|X)− f(x; θ∞)
∣∣ (104)

≤
(
B +

R

λ

√
2 log δ−1

)
σNTKGP(x|X) +

√
2 log δ−1 · σNN(x|X) (105)

≤
[
B +

(
R

λ
+ 1

)√
2 log δ−1

]
σNTKGP(x|X) (106)

where

• (103) is true due to the triangle inequality,

• (104) is true with probability at least 1− δ based on Theorem 1 of (Vakili et al., 2021a),

• (105) is true with probability at least 1− δ due to Hoeffding inequality for sub-Gaussian random variables, and

• (106) is true since we know that σNTKGP(x|X) ≥ σNN(x|X) from He et al. (2020).

By union bound, the statement above is true with probability at least 1− 2δ.

The loss as decomposed in (103) can also be thought of as the sum of the model bias (i.e. how well our neural network
architecture is able to fit the given underlying function), given by 1⃝, and the variance of prediction due to the random
network initialization, given by 2⃝. By Theorem B.1, we can show that we are minimising the predictive variance 2⃝,
however our ability to do so will also depend on the bias term 1⃝.

C. Discussions On Active Learning Criteria
In this section, we discuss the active learning criteria based on the NTKGP which we use. We first provide further discussion
on the expected value criterion, then we discuss two other possible criteria omitted from the main text based on variance
percentile and on mutual information. The experiments comparing the performances of the other active learning criteria can
be found in App. H.3.3.

C.1. Expected Variance Criterion

The expected variance criterion has been introduced in the main paper in (9). In this section, we would like to further explore
how the active set is selected based on this criterion. In Fig. 8, we embed our data onto a space using t-SNE (Maaten &
Hinton), then plot out the predictive variance at model initialization of different regions. An interesting observation from the
plot is that the output variance with respect to model initialization is actually heteroscedastic. This means there will be some
inputs which will have more varied model prediction than others at initialization. From the plot, we see that our algorithm
does not necessarily pick the samples which evenly covers the whole input space, unlike what coverset-based algorithms
may choose to do. Rather, our algorithm tends to also prioritise querying points from regions where the predictive variance
is high, and balance it with querying from regions with a larger number of points.

Training-Free Neural Active Learning with Initialization-Robustness Guarantees

Figure 8. Visualisation of which points are selected by αEV criterion. The black points represent the unlabelled set of data from the
Handwritten Digits (from the UCI repository), mapped onto a 2D plane using t-SNE based on the predictive correlation (i.e. if the model
output is more correlated, then they will be mapped closer in the above representation). The contours represent the predictive standard
deviation of each input point, computed using the empirically with the model output at initialization. The crosses represent the points
which are selected by our active learning algorithm using the αEV criterion.

C.1.1. PRACTICAL SPEEDUPS

In additional to the speedups in computations as discussed in App. D.2, we also make further approximations in order to
compute αEV. Namely, rather than computing the empirical mean of output variance on the whole test set XT , we first
select a subset of the test set using simple diversification methods (e.g. K-MEANS++), then only compute the criterion on
those data. We find that not only does this speed up the criterion computation, this technique also remove some bias in the
test data distribution and give a more representative of the overall variance across the whole space. We also optimize our
computation of αEV further by only computing the variance σ2

NTKGP and not the whole covariance ΣNTKGP.

C.2. Variance Percentile

Another possible idea is to ensure that some proportion of test points has a low variance. This can be done by considering
the rth percentile of variance, i.e.

αrV(X) = − percentile
(
{σ2

NTKGP(x|X)|x ∈ XT }, r
)
. (107)

In this case, letting r = 50 is equivalent to considering the median of test output variance, and letting r = 100 is equivalent
to considering the maximum test output variance.

Unfortunately, the maximum function is not submodular in general, and therefore has no theoretical guarantees when points
are selected using the greedy algorithm. Nonetheless, we will conduct experiments to select points based on this criterion
for the cases where r = 90 and r = 100.

C.3. Mutual Information Criterion

The previous criteria we have discussed often does not take into account the distribution of XT . Through the lens of
information theory, we can view the active learning problem as attempting to select points XL with outputs yL such that the
most information can be obtained about yT , and that the dependence between each datapoint is also taken into account.
Similar to Krause et al. (2008), we can attempt to maximise the mutual information

αMI(XL) = I[yL;yT\L] (108)
= H[yT\L]−H[yT\L|yL] (109)

=
1

2
log detΣNTKGP(XT\L)−

1

2
log detΣNTKGP(XT\L|XL) + constant, (110)

Training-Free Neural Active Learning with Initialization-Robustness Guarantees

where we use the shorthand XT\L = XT \XL. We are able to arrive at the final line since we know the predictive covariance
follows a multivariate Gaussian distribution.

In the case that the test set and the unlabelled pool are disjoint, we have yT\L = yT , which means H[yT\L] is a constant
regardless of which active set we choose. In this case, maximising αMI is equivalent to minimising H[yT |yL]. Similar to
the case of αEV, in experiments where the test set is separate from the unlabelled pool, we will simply report the values of
−H[yT |yL].

C.3.1. NUMERICAL STABILITY

A particular issue with using the mutual information is the numerical stability when computing the entropy values. In
particular, αMI involves computing the entropy H[yT\L|yL], which involves computing the determinant detΣNN(XT\L|XL).
However, when the test set XT\L have points which are highly correlated with each other, the matrix ΣNN(XT\L|XL) may
be singular and cause the determinant to be undefined.

Notice that the decision of using XT\L instead of XT will already alleviate some of the issues regarding singular matrices.
However, in order to prevent further issues, in our experiments, we decide to pre-filter the points that are used for the test
set. In particular, instead of using all points from the test set, we select only a subset of training points such that H[yT] is
maximised. This means that the subset selected will be as independent from each other as possible. Furthermore, using a
subset of points instead of the full test set also reduces the matrix size, which speeds up our computation as well. The subset
of points that are selected are done so using the K-MEANS++ initialization method.

Furthermore, to avoid computing the determinant of a singular matrix, we add in a diagonal noise term in order to compute
the determinant of ΣNN(XT\L|XL) + σ2

nI instead. This corresponds to the case where the observation has some added
noise with variance σ2

n.

D. Efficient Computations of the NTKGP
D.1. Incremental Computation of σ2

NTKGP

Computing σ2
NTKGP(·|X) for the active learning criteria is computationally expensive. Fortunately, we know that in our

active learning algorithm the labelled set X is always incremented by one each time, and so when we would like to compute
the criterion α(X ∪ {x′}), rather than recomputing the σ2

NTKGP(·|X ∪ {x′}) again each time, we can just get the updated
value of σ2

NTKGP(·|X ∪ {x′}) based on the already-known value of σ2
NTKGP(·|X).

Suppose we let X ′ = X ∪ {x′}. We can utilize the formula for inversion of block matrices (e.g. Eqns. A.11 and A.12 of of
Rasmussen & Williams (2006))[

A B
C D

]−1

=

[(
A−BD−1C

)−1 −A−1B
(
D−CA−1B

)−1

−D−1C
(
A−BD−1C

)−1 (
D−CA−1B

)−1

]
(111)

and the matrix inversion lemma (e.g. Eqn. A.9 of Rasmussen & Williams (2006))

(A+BCD)−1 = A−1 −A−1B(C−1 +DA−1B)−1DA−1 (112)

to see that

Θ−1
X ′ =

[
ΘX ΘXx′

Θx′X Θx′

]−1

=

[(
ΘX −ΘXx′Θ−1

x′ Θx′X
)−1 −Θ−1

X ΘXx′
(
Θx′ −Θx′XΘ−1

X ΘXx′
)−1

−Θ−1
x′ Θx′X

(
ΘX −ΘXx′Θ−1

x′ Θx′X
)−1 (

Θx′ −Θx′XΘ−1
X ΘXx′

)−1

]
(113)

and

σ2
NTKGP(x|X ′) = Θx −ΘxX ′Θ−1

X ′ΘX ′x (114)

= σ2
NTKGP(x|X)−ΘxXΘ−1

X ΘXx′
(
Θx′ −Θx′XΘ−1

X ΘXx′
)−1

Θx′XΘ−1
X ΘXx

+ 2 ·ΘxXΘ−1
X ΘXx′

(
Θx′ −Θx′XΘ−1

X ΘXx′
)−1

Θx′x

−Θxx′
(
Θx′ −Θx′XΘ−1

X ΘXx′
)−1

Θx′x. (115)

Training-Free Neural Active Learning with Initialization-Robustness Guarantees

Given that Θ−1
X can also be reused from the previous round and updated iteratively using Eq. (113), this means the variance

can be computed more efficiently.

D.2. Approximating µNTKGP and ΣNTKGP Using Sparse GPs

A benefit for using ΣNTKGP for our criterion is that unlike ΣNN, the covariance matrices in the form of ΣNTKGP is well-studied
in Gaussian process literature, and methods of sparsifying the kernel matrix has been proposed. Below, we discuss how such
approximation techniques can be used.

Given we have a set of labelled training data X , we would like to compute the posterior variance ΣNTKGP(XT |X). Since it
is expensive to compute the posterior directly, we will use techniques from sparse GPs to compute the approximate posterior.
In particular, we will use the approximation framework as proposed by Hoang et al. (2015).

Let U = (XU ,yU) be a set of inducing points which is a representative for XT . Note that in general, U does not have to be a
subset of X , and therefore is not necessarily a valid candidate for the active set. For simplicity, we will attempt to apply the
Fully-Independent Conditional (FIC) approximation, where we assume that yT and y are conditionally independent given
yU , i.e.

p(yT |y) =
∫

p(yT |yU ,y)p(yU |y)dyU ≈
∫

p(yT |yU)p(yU |y)dyU . (116)

We can assume that p(yU |y) ≈ q(yU) and the goal is to compute the distribution of q(yU) such that DKL[q(yU)∥p(yU |y)]
is minimised.

Assume that q(yU) is a normal distribution, i.e. assume that q(yU) ≜ N (µU ,ΣU) where the mean and the covariance
function will be dependent on our choice of set X . According to Hoang et al. (2015), it can be shown that the µU and ΣU
which minimises the KL divergence will also maximise the ELBO as given by (Equation 6 of (Hoang et al., 2015))

L(q) =

∫
q(fU)

[∫
q(f |fU) log

p(f ,y|yU)

q(f |fU)
df

]
dfU −DKL[q(fU)∥p(fU)] (117)

where f is the true model function (i.e. the noiseless version of y). In order to compute the distribution q(yU) which
maximises L, we can compute its gradient. In this case the gradient has a nice closed form, and is given by (Equation 17 of
Hoang et al. (2015))

∂L

∂µU
= Θ−1

U µU −
∑

(x,y)∈D

[
G(U , x)− F (U , x)µU

]
(118)

and (Equation 18 of Hoang et al. (2015))

∂L

∂ΣU
= Σ−1

U −
1

2
Θ−1

U −
1

2

∑
x∈X

F (U , x) (119)

where G(U , x) = Θ−1
U ΘUxΓ

−1
x y, F (U , x) = Θ−1

U ΘUxΓ
−1
x ΘxUΘ

−1
U µU and Γx = Θx − ΘxUΘ

−1
U ΘUx. We will also let

ΘU = Θ(XU ,XU) and ΘxU = Θ(x,XU). Using the closed form expression of the gradient, the optimal µU and ΣU can be
computed through gradient ascent or by directly solving equations ∂L/∂µU = 0 and ∂L/∂ΣU = 0. In our experiments, we
will use the latter method.

Given the optimal µU and ΣU , the mean of the sparse NTKGP approximation can be computed as

µsNTKGP(yT |y) = ΘTUΘ
−1
U µ∗

U , (120)

and the covariance by
ΣsNTKGP(yT |y) = ΘT −ΘTUΘ

−1
U ΘUT +ΘTUΘ

−1
U Σ∗

UΘ
−1
U ΘUT . (121)

The approximate posterior can now be computed with time cubic with number of inducing points, rather than cubic in
number of training points. The equation can also be iteratively computed in quadratic time if Eq. (112) is used for matrix
inversion.

From the decomposition in Eqs. (118) and (119), we see that the FIC approximation is nice to use since it is possible to
decompose the summation above based on terms F (U , x) and G(U , x) where each terms only depends on one element, and
independent of the other elements in D. This is convenient when trying to add one element and see what effect it has on the
inducing points distribution. Using this fact, it is also possible to apply a further linear approximation on the criterion (as we
will present in the next subsection) which allows for even more efficient computation.

Training-Free Neural Active Learning with Initialization-Robustness Guarantees

D.3. Approximating incremental change of µNTKGP and ΣNTKGP

Given the inducing point prior ΣU (X) as computed by the method above, we could theoretically compute the approximate
posterior ΣsNTKGP(XT |X ∪ {x′}) when one point is added directly using the same method. However, this can still be
expensive to perform. Therefore, we propose a simple technique to approximate the updated value of ΣU (X ∪ {x′}), and
therefore ΣsNTKGP(XT |X ∪ {x′}), when we add a small number of points to the training set. The approximation technique
is akin to the influence function as proposed by Koh & Liang (2020).

When we add a single point to the training set, the ELBO (Eq. (117)) will only change by a small amount. Let L′ = L+∆L be
the new loss function after adding x′ into the setX , and ∆L be the contribution specifically from the new element x′. Since L
only changes by an amount ∆L, we also do not expect ΣU to change by much. Let ΣU (X ∪{x′}) = ΣU (X)+∆ΣU (x

′;X)
where ∆ΣU (x

′;X) is the change of the inducing prior after adding the training point x′. We see that ΣU (X ∪ {x′}) and
ΣU (X) would be slightly different from each other.

We find that the change in the inducing points posterior can be instead given by

∆ΣU (x
′;X) ≈ −

(
∂2L

∂Σ2

∣∣∣∣
Σ=ΣU (X)

)−1(
∂(∆L)

∂Σ

∣∣∣∣
Σ=ΣU (X)

)
(122)

Conveniently, the FIC approximation gives rise to a loss function whose gradient is easily decomposable. We can write the
derivative of the loss function contribution from x′ as

∂(∆L)

∂Σ
= −1

2
F (U , x). (123)

We also see that the Hessian of the original loss is equal to the Jacobian of the matrix inverse, i.e.

∂2L

∂Σ2
=

∂

∂Σ

(
1

2
Σ−1

)
(124)

which can easily be computed in closed form and also using any auto-differentiation package. Expressions from 123 and
124 can be plugged back into 122 to obtain the change of ΣU when one new sample is added.

Therefore, any criterion α we have which would depend on the approximation of the sNTKGP can be approximated as

∆α(x′;X) ≈
〈

∂α

∂ΣU
,∆ΣU (x

′;X)
〉
. (125)

This expression can be used to compute the change in the active learning criterion when an additional data point is added.
Because this term is based on the inner product of some matrix quantities, it is parallelisable and in practice speeds up the
algorithm by a large amount.

Experimentally, the Hessian can be expensive to compute. In order to speed up the computation, we can instead use an
alternate parametrisation of the sparse GP called the natural parameters which defines parameters to match more naturally
to the terms that appears in the Gaussian distribution. We refer the readers to the original paper (Hoang et al., 2015) for
further details on this.

E. Further Details about the Greedy Algorithm
As denoted in Algo. 1, for the data selection stage, we utilise the simple greedy algorithm to find the set of suitable points.
However, the greedy algorithm requires O(nk) criterion computations, which can be slow.

There is a large literature on efficient submodular maximisation algorithms with cardinality constraints. This, however is
not the focus of this paper. Furthermore, since the data selection stage is independent of the true labels, our algorithm can
Nonetheless, for practical purposes, we choose to apply two simple algorithm optimization techniques.

The first optimization performed based on the ACCELERATED-GREEDY algorithm (?). For each element in the unlabelled
data pool, we store the marginal gain value ∆x(X) ≜ αEV(X ∪ {x})− αEV(X) for some X that was previously computed.
Then, as the greedy algorithm progresses, we will continue to grow the selected active set into some X ′ ⊃ X . From

Training-Free Neural Active Learning with Initialization-Robustness Guarantees

submodularity, we know that ∆x(X) ≥ ∆x(X ′). This means that in one particular round with set X ′, if we already have
checked another point whose marginal gain in that round is such that ∆x′(X ′) ≥ ∆x(X), then there is no point in checking
x′ since we know the criterion value of X ′ ∪ {x′} will definitely be higher than that obtained from X ′ ∪ {x′}. In our
algorithm, when the empirical NTK is used, we reinitialize the random neural network after each batch of data (which
changes the empirical NTK), and as a result also reset the stored values of ∆x.

Another optimization used is that in each greedy round, we do not compute the criterion on all elements, but only on a
subset of k′ elements per round. In each greedy round, the maximum value amongst the k′ elements tested is added to the
active set. This is the technique used in the STOCHASTIC-GREEDY algorithm (Mirzasoleiman et al., 2014), and is able to
achieve accuracy arbitrarily close to 1− 1/e in O(n) time (independent of k). In our experiments, we either set k′ = 1000
for experiments with smaller budgets and k′ = 250 for experiments with larger budgets.

F. Further Details of the Model Selection Algorithm
F.1. Proof of Eq. (10)

We verify Eq. (10) for MSE loss. For a single test point (x, y), notice that we can write

Eθ0

[
ℓ
(
(x, y), train(θ0)

)]
= Ey′∼N (µNN(x|X),σ2

NN(x|X))

[
(y′ − y)2

]
= Ey′ [(y′)2]− 2yEy′ [y′] + y2

= µNN(x|X)2 + σ2
NN(x|X)− 2yµNN(x|X)− y2

= (y − µNN(x|X))2 + σ2
NN(x|X)

where the first equality is based on the predictive distribution of the converged model.

G. Further Details on Experimental Setup
In this section, we provide further details of the experiments conducted. All the code for the experiments are also provided
in the supplementary material.

G.1. Training Setup for Each Experiments

G.1.1. REGRESSION EXPERIMENTS

We will use a combination of generated dataset and real-life data. For this paper, randomly generated data (Random Model)
is constructed from random points from a ball, with their output values generated from a random model initialization (which
ensures that the neural network will be adequate to describe the data used).

Meanwhile the real-life training data are taken from the UCI Machine Learning Repository (Dua & Graff). For all dataset,
we split the whole data in half, and let one half be the pool of data and the other be the test data which the algorithm has
no access to. All the dataset used are regression datasets, with the exception of the Handwritten Digits dataset which is a
classification dataset where we perform regression on the label value (i.e. for the inputs corresponding to the digit 1, we
assign y = 1). All datasets are also normalized such that they have mean of zero and variance of 1.

In all of the regression experiments, the model used is a two-layer multi-layer perceptron with width of 512 and with bias.
We set σW = 1. and σb = 0.1. The NNs are optimized using gradient descent with step size 0.01.

G.1.2. EXPERIMENTS ON THE CLASSIFICATION DATASET

In the classification datasets, in order to reduce the training time, we restrict the unlabelled data pool to a random subset of
the whole training set. For the MNIST dataset, we randomly select 10k points and use it as our unlabelled pool, while for the
remaining classification experiments we randomly select 20k points for the unlabelled pool. All the inputs are also rescaled
such that the distribution of input values are between [−1, 1]. For all the models, we train the models using stochastic
gradient descent with learning rate of 0.1 and weight decay of 0.005. The models are trained with training batch size of 32
and are trained for 100 epochs. Below, we provide a brief description of the datasets used and the model architectures used
for training on the correpsonding datasets.

Training-Free Neural Active Learning with Initialization-Robustness Guarantees

• MNIST (Deng, 2012). MNIST is a database whose inputs are single-channel images of size 28× 28 that corresponds
to handwriting of different digits. For MNIST, we use a multi-layer perceptron with two hidden layers each of width
512 as we have done for the regression experiments. We find that using such a simple model without convolution is
sufficient for the MNIST dataset. In the experiments where we vary the network width at active learning stage and
training stage (Fig. 20), we used a 3-layer MLP and experiment with network widths 128, 256, 512 and 1024. The total
query budget was fixed at 600 and the query size at 200.

• EMNIST (Cohen et al., 2017). The EMNIST dataset is an extension to the MNIST dataset, where the input contains
handwritten characters as well as handwritten digits. There are a total of 47 output classes (since some of the characters
that have a similar shape are grouped together in the same group). For EMNIST, we either use a multi-layer perceptron
with three hidden layers each of width 512, or a simple convolutional neural network with 2 blocks of [CONV -
MAXPOOL - RELU], followed by a fully-connected layer of width 512.

• SVHN (Netzer et al.). SVHN consists of RGB images of size 32× 32 which corresponds to photos different digits.
Each image in the SVHN dataset corresponds to one of the 10 classes, each representing a digit. For SVHN, we use a
1-layer WideResNet (Zagoruyko & Komodakis). We modify the network by removing the batch normalization layer in
order to make the module compatible with FUNCTOOLS on Pytorch (see App. G.2) such that the NTK is computable
by gradient inner product, and also to ensure positive-semidefiniteness of the resulting matrix. While this may result in
a lower model accuracy, this is not a main concern of this work regardless since we are more interested in the relative
accuracy between each active learning methods.

• CIFAR100 (Krizhevsky). CIFAR100 is a dataset consisting of RGB images of size 32× 32 which corresponds to one
of 100 different image categories. For CIFAR100, we use a 2-layer WideResNet with similar modifications as we have
done for SVHN.

G.1.3. MODEL SELECTION ALGORITHM

For the model selection experiments, the data used are from the UCI dataset (as we have done for the regression experiments).
We also construct an artificial dataset Sinusoidal whose output is generated from the sine function y = sin(ω⊤x+ b) for
some random ω and b.

The pool of modelsM consists of MLPs with depths 1, 2, 3 and 4, and with ReLU, GeLU, leaky ReLU (a = 0.1), and Erf.
This makes up a total of 16 candidate models. All the models are implemented on JAX (in order to match the theoretical NTK
which is also computed in JAX). For the model selection algorithm, in order to approximate αM , we choose κ = 0.3|L| for
the labelled set L at that round, and compute the empirical mean of αM by sampling the random subset 100 times. The
batch size for active learning is 10 or 20 depending on the size of the dataset.

The models are trained using the Adam optimizer with learning rate 0.01. The reason the Adam optimizer is used is that
some of the activation functions suffer from diminishing gradients, and therefore does not behave well when using gradient
descent. The training is all done in a single batch, and is done for 500 epochs.

G.2. Computation of the Neural Tangent Kernel

G.2.1. THEORETICAL NTK USING NEURAL-TANGENTS

The theoretical NTK are computed using the NEURAL-TANGENTS package (Novak et al., 2019). Even though the final
trained model will not have exactly the same network parameters as that assumed to compute the theoretical NTK (due to
different packages used during active learning and true model training), we still find that the kernel itself shows enough
agreements and are still useful for predicting the model behaviour.

The main disadvantage of using the theoretical NTK is that the theoretical NTK is not available for all model architectures.
In particular, NEURAL-TANGENTS does not work for MaxPooling layers (only AvgPooling is supported), and also does not
work for BatchNorm layers or Dropout layers placed arbitrarily. For this reason, experiments involving the theoretical NTK
are only restricted to ones which uses a MLP. We also only use the theoretical NTK for experiments involving our algorithms,
and do not use it for MLMOC which uses the empirical kernel in order to predict how a specific model initialization will
behave during training.

Training-Free Neural Active Learning with Initialization-Robustness Guarantees

G.2.2. EMPIRICAL NTK USING PYTORCH

An alternative method of computing the NTK is to do so empirically. In order to compute the NTK empirically, we require
taking the inner product of the model output gradient∇θf(x,X) with respect to its parameters. This requires us to compute
the Jacobian ∇θf(x,X), which is extremely expensive in terms of required memory and cost for performing the matrix
multiplication. In particular, for a model with p parameters and o outputs, computing the NTK on an input of size n requires
O(npo) space and O(n2po) running time for the matrix multiplication alone. In order to perform this operation efficiently,
we follow the method as used in PyTorch’s FUNCTOOLS tutorial5. Note that FUNCTOOLS is not compatible with all neural
network components (e.g. BatchNorm), and therefore in our experiments we do not use those components in the models.
Even though Neural-Tangents is able to compute the empirical NTK as well, we chose to compute the empirical NTK
on PyTorch since the models and (most of) the model training are done on PyTorch anyway.

For classification instances where the model has multiple outputs, we also perform a further approximation of only using the
gradient which contributes to a single model output (which is chosen at random). This is possible since the gradient inner
product with respect to each outputs are independent of each other and has the same value in the limit. This is a similar trick
which is also used by Mohamadi et al. (2022).

G.3. Reported Metrics

To quantify the model performances, we use either the test mean-squared error (MSE) for regression problems, or the test
accuracy for classification problems.

To quantify the initialization robustness of the models, we use two different metrics as described below.

• Output variance. This is used as an initialization-robustness measure for regression tasks, and is the empirical variance
of output of trained neural networks with respect to the different model initializations. In our experiments, we report the
90th percentile output variance, which is defined as the 90th percentile output variance test data. The 90th percentile is
used instead of the 100th percentile (i.e. the maximum output variance) since using the 100th percentile tends to focus
on some outlier rather than reflecting the output variance of the majority of the test data. We also chose to report the
90th percentile value instead of the average value since it is able to indicate the output variance of the worst-case inputs
and is therefore a better measure of initialization robustness on the overall space.

• Output entropy. This is used as an initialization-robustness measure for classification tasks, and is defined as the
empirical entropy of the predicted label. For a neural network, the predicted label for some input x is given by
ŷ = argmaxi f(x; θ)i. Given multiple trained models with different parameters θ1, . . . , θk, we will obtain different
predictions ŷ1, . . . , ŷk. The output entropy is then defined as −

∑c
i=1 vi log vi where vi =

1
c ·
∑k

j=1 1[ŷj = i]. A
lower output entropy corresponds to models whose predictions are more consistent with each other.

G.4. Description of Other Active Learning Algorithms

Below, we provide a brief description of the other active learning algorithms which we compare our method against.

• RANDOM. The batch of points are selected uniformly at random without replacement.

• K-MEANS++. The batch of points are selected based on the initialization method from Arthur & Vassilvitskii. When
using this algorithm, all the points are selected right from the start (and order in selection by the algorithm is kept).
When the user queries for a batch of size b, the algorithm returns the next b elements that it has chosen from the
K-MEANS++ initialization algorithm.

• BADGE (Ash et al., 2020). BADGE utilizes the hallucinated gradient space, or the gradient of the loss function with
respect to the final output layer,

h(x) =
∂

∂θ(−1)
ℓ((x, ỹ), θ)

where θ(−1) are the model parameters of the final output layer and ỹ is the pseudo-prediction from the model based
on the model output (for example, in classification problems, ỹ would be the one-hot vector representing the class

5See https://pytorch.org/functorch/stable/notebooks/neural_tangent_kernels.html.

https://pytorch.org/functorch/stable/notebooks/neural_tangent_kernels.html

Training-Free Neural Active Learning with Initialization-Robustness Guarantees

prediction given by the model output). Pseudo-labels are used since in active learning, the algorithm would not have
access to the true labels. Given the embedding h(x), BADGE then performs diversification on this embedded input.
Theoretically, BADGE is able to provide a balance between selecting points which are diverse and selecting points
which the model is uncertain about.

Unlike in the original paper, for experiments involving BADGE, we do not provide the algorithm with an initial
training set. Despite this, we find that BADGE is still able to select a good batch of points from the start, and is even
able to beat our algorithm in some experiments.

• MLMOC (Mohamadi et al., 2022). MLMOC uses the NTK to provide a prediction of how a neural network would
behave when an additional point is added to the training set. Given this, the algorithm selects an active set which when
trained, will cause the largest change in the model output.

In our experiments, MLMOC will randomly select 100 initial points for classification experiments. The random subset
is counted as a part of the budget used up by MLMOC. For SVHN and CIFAR100 experiments, this is fewer points
than provided in the original paper. However, this setup is chosen in order to test how the algorithm performs when
there is little initial data available. We found that MLMOC performs poorer when there are fewer initial data points
available to it.

H. Further Details on Experimental Results
H.1. Description of Figures

In this section, we give a more detailed description of the figures plotted in the main paper.

• Fig. 2. This figure shows the correlation between variance predicted by the NTKGP, σ2
NTKGP(x|X), and the (empirical)

model output variance. The horizontal represents the variance based on σ2
NTKGP(x|X) for a certain element x from

the validation set and a certain subset X of the unlabelled data pool, while the vertical represents the empirical output
variance with respect to different model initialization. In this experiment the Robot Kinematics dataset was used.

• Fig. 3. This figure shows the relationship between the different criteria value, the 90th percentile output variance, and
the test MSE. In each row, from left to right, the graph shows: the relationship between the 90th percentile variance
and αEV; the 90th percentile output variance of models when trained on active sets of increasing sizes; the test MSE
when trained on active sets of increasing sizes. The blue line represents the active set which has been sequentially
constructed based on the αEV criterion. Each row represents trials conducted on one dataset. SP and PR represents the
Spearman Rank correlation and Pearson correlation coefficients respectively. The metrics reported on the y-axis are
described further in App. G.3.

H.2. Relationship Between σNTKGP, σsNTKGP and Output Variance

In Fig. 9, we provide further results comparing the variance obtained from the σNTKGP, σsNTKGP approximations and the true
output variance. We find that σNTKGP provides good agreement with the output variance, while σsNTKGP provides a worse but
still good enough approximation of the true output variance. Furthermore, note that the graph shows the individual variance
and not the sum of variance (as αEV requires) so when computing the criterion, the discrepancy between using the NTKGP
or sNTKGP approximation and using true output variance will be lower (see Fig. 10).

H.3. Additional Results From Regression Experiments

H.3.1. EXPERIMENTS ON OTHER REGRESSION DATASETS

In Fig. 10 we show further results for other regression datasets in the sequential selection process, and in Fig. 11, we show
the results in the larger-scale, batch setting.

H.3.2. SUITABILITY OF αEV AND MSE LOSS

In Fig. 12, we study how the ability of αEV to represent the test loss is able to reflect how suitable the model is for the given
dataset. We find that when αEV shows a higher correlation to the test loss, the achievable test loss (when the model is trained
on the entire set) is also lower. This shows that if we have a model which matches closely to the true data, then optimizing

Training-Free Neural Active Learning with Initialization-Robustness Guarantees

Robot Kinematics Protein

Naval Handwritten Digits (Regression)

Figure 9. The correlation between variance predicted by the NTKGP and sNTKGP, and the (empirical) model output variance. The x-axis
represents the variance based on the NTKGP or the sNTKGP for a certain element x from the validation set and a certain subset X of the
unlabelled data pool, while the y-axis represents the empirical output variance with respect to different model initialization.

αEV is more likely to result in a low test loss. This fact can be related back to Theorem B.1, where we have the constant B
which represents how well the underlying function fits with the neural network model. The lower value of B means that
optimizing αEV can provide a tighter bound on the difference between the trained model and the true function. We also note
that despite the results showing low correlations between αEV and MSE loss in some of the datasets, we are still able to
minimize the loss simply by maximising αEV.

H.3.3. RESULTS FOR OTHER ACTIVE LEARNING CRITERIA

We present some results for other active learning criteria presented in App. C. In Fig. 14 we show the results in the sequential
setting, and in Fig. 15 we show the results in the batch setting.

We find that α100V tends to perform poorly compared to the other criteria, and sometimes even worse than RANDOM in
some instances (in Fig. 15 we did not show some of the results from α100V since it gave a training set which was unstable
during training). We believe that this is due to the fact that α100V will sometimes tend to be too focused on reducing the
variance of outliers that it does not provide a diverse subset of points. Reducing this threshold to the 90th percentile (and
using α90V) is able to give a better subset however still is not as effective as αEV.

Meanwhile, αMI often results in good performances, and sometimes even outperforming αEV. However, we find it is still
less preferable since its advantage over αEV is not consistent and also due to the aforementioned issue of computational
efficiency.

H.3.4. RESULTS FOR APPROXIMATION METHODS OF NTKGP

In Figs. 16 and 17, we present the results for active learning results for various approximation methods of the NTKGP,
namely approximating the NTK empirically, and approximating the covariance using sparse GP techniques (as introduced in
App. D.2).

We can see that the empirical approximation of the NTK sees some drop in performance compared to the theoretical NTK,
however still provides useful enough approximation for the true NTK for our purposes.

Training-Free Neural Active Learning with Initialization-Robustness Guarantees

Boston Naval

Handwritten Digits (Regression) Robot Kinematics

Figure 10. Relationship between the different criteria value, the 90th percentile output variance, and the test MSE. The information shown
is presented in the same manner as Fig. 3 (see App. H.1).

Boston Naval

Figure 11. Active learning on regression datasets. The information shown is presented in the same manner as Fig. 4 (see App. H.1).

Meanwhile, in the experiments where the covariance from the sNTKGP is used, we can see that the method also still
provides a useful approximation for the criterion, and may be used instead of the true NTKGP, at least for smaller problems.
Unfortunately, we find that applying a further linear approximation to the sNTKGP computation worsens the selection
process. This suggests that the covariance function from the sNTKGP may not be smooth enough and so assuming a linear
approximation method is inaccurate.

In practice, we also find that for smaller datasets (where the number of selected points is not smaller than the number of
inducing points), the sNTKGP approximation is not as beneficial since the computation required for the full-rank NTKGP
is already low and sNTKGP requires more matrix computation that would otherwise. Nonetheless, the sNTKGP may be
a useful approximation method if can be scaled, and can be an interesting future direction of making our method more
scalable.

H.4. Additional Results From Classification Experiments

H.4.1. ADDITIONAL RESULTS FROM EXPERIMENTS INVOLVING NEURAL NETWORKS WITH CONVOLUTIONS

In Fig. 18(a-b), we show the corresponding output entropy of the experiments from Fig. 5(c-d). We find that even for
convolution experiments our method can generally select points which result in good initialization-robustness. In Fig. 18(c-d)
we also provide further results for active learning on CIFAR100 dataset.

Training-Free Neural Active Learning with Initialization-Robustness Guarantees

Figure 12. Plot between the correlation of αEV(X) and the MSE loss when trained on X , and the empirical bias (defined as the average
MSE loss minus the output variance), on different regression datasets. Note that αEV is higher when the output variance and the MSE
loss is lower, meaning the correlation values on the x-axis are all negative. The Random Model dataset is a dataset whose outputs are
generated from a randomly initialized 2-layer MLP (which the neural network is expected to fit well on). The results for active learning on
the datasets labelled in the graph are shown in Fig. 13.

H.4.2. ADDITIONAL RESULTS FROM VARYING ACTIVE LEARNING BATCH SIZES

In Fig. 19, we present further results for neural network active learning when the batch sizes vary. We find our algorithm
shows little change in both accuracy and output entropy as the batch size gets larger. Note that when the empirical NTK
is used, the algorithm seems to perform slightly worse in larger batch sizes case. This may be due to the chance that in
some randomized network the empirical NTK provides a slightly less accurate representation of the true uncertainty. In the
smaller iterations the random neural network used for NTK computation is reinitialized and so such an error can be reduced.
However we find that in practice this effect is less significant and we still achieve a good active set regardless.

H.4.3. RESULTS FROM VARYING NEURAL NETWORK WIDTH

Here we investigate how the width of the NN affects the performance of our EV-GP-EMP algorithm, by changing the widths
of both the NNs used for data selection (i.e., for calculating our EV-GP criterion (Sec. 3.3)) and for training. The left figure
in Fig. 20 shows that increasing the width of either the NN for data selection (horizontal axis) or for training (different lines)
improves the initialization robustness This is because a wider NN for both data selection and training can reduce the error
between the empirical NTK and exact NTK (Sec. 2.1), and therefore improve the accuracy of approximation for σ2

NTKGP (6)
and our EV-GP criterion (9). As a result, this leads to more accurate data selection and hence better initialization robustness.
The right figure in Fig. 20 shows that increasing the width of the NN for training improves test accuracy, which can be
attributed to the better expressivity of wider NNs (for the fixed width). Meanwhile, in contrast to initialization robustness,
increasing the width of the NN for data selection does not have a significant impact on the test accuracy. This suggests that
the NN does not need to be extremely wide in order to select data points that lead to a good predictive performance of the
trained NN.

H.4.4. EFFECT OF INITIAL POINTS ON OTHER ACTIVE LEARNING BENCHMARKS

For BADGE and MLMOC algorithms, we find that the model performance is sometimes affected by how many initial
labelled points were given to the algorithms. We plot the algorithms when some random data is available versus the case
where no random initial data is given in Fig. 21.

We find that BADGE shows little difference whether the first batch of data is randomized or not. This demonstrates the
BADGE is able to select diverse points by itself without needing extra information to kickstart the algorithm. MLMOC, on
the other hand, seems to be more reliant on the initial dataset, with a noticeable drop in performance when the algorithm is
given no initial data. This suggests that MLMOC is a poor choice in the low-data regime, when the active learning algorithm
has to provide good performance right away even when little prior knowledge about the data is given.

Training-Free Neural Active Learning with Initialization-Robustness Guarantees

Random Model Boston

Robot Kinematics Protein

Figure 13. Plot comparing the values of αEV(X) and the MSE loss when trained on X on different regression datasets. For each dataset,
the left plot shows αEV(X) and test MSE when trained on different subsets of X , and the right plot shows the test MSE when trained on
subsets of different sizes. The blue line shows the subset selected by our greedy algorithm to maximize αEV. The datasets in the top row
shows higher correlation between the criterion and the corresponding MSE loss, whereas the bottom row shows the opposite case. This
correlation also reflects how well the chosen model architecture fits with the dataset.

H.5. Additional Results for the Model Selection Algorithm

H.5.1. RELATIONSHIP BETWEEN αM AND TRUE LOSS

In this section we present how our model selection criterion relates to the true MSE loss. In Fig. 22, we present how the
model selection criterion αM relates to the true achievable MSE loss. Note that we do not expect αM to be a perfect
reflection of the test MSE since during the active learning we do not know what the true test set is, and that αM will be
dependent on what L is at the current point. Regardless, we find that αM is able to give an accurate reflection of the MSE
loss achievable.

H.5.2. ADDITIONAL RESULTS ON OTHER REGRESSION DATASETS

In Fig. 23, we present further results for EV-GP+MS on other regression datasets. We find that in most datasets, our
algorithm is able to select a suitable model architecture for the dataset, which leads to a low MSE loss at test time.

An issue we have found is that our algorithm is often sensitive to the obtained value of αM . In some cases, multiple models
will have a similar value of αM , but in practice will have different MSE loss at training. This often leads to selecting a
model which is suboptimal (although still provides acceptable results nonetheless). A future research direction would be on
how the algorithm can be improved so that such noise can be mitigated.

Training-Free Neural Active Learning with Initialization-Robustness Guarantees

Protein

Robot Kinematics

Boston

Naval

Handwritten Digits

Mock Data

Figure 14. Relationship between the different criteria value, the 90th percentile predictive variance, and the test MSE. Each grey point
represents one instance of a randomly-selected active set. The coloured line represents the subset greedily selected to optimize the
corresponding criteria. Each row represents trials conducted on one dataset. SP and PR represents the Spearman Rank correlation and
Pearson correlation coefficients respectively. The metrics reported on the y-axis are described further in App. G.3.

Training-Free Neural Active Learning with Initialization-Robustness Guarantees

Boston Naval

Robot Kinematics Protein

Figure 15. Active learning on regression datasets with different criteria based on σ2
NTKGP. The information shown is presented in the same

manner as Fig. 4 (see App. H.1).

Boston Naval Robot Kinematics Protein

Figure 16. Active learning on regression problems with different approximations of σNTKGP. The graph shows the output variance of the
test dataset when trained on the selected active set of various sizes, according to how it was approximated. The information presented is
similar to that shown in the graphs on the right column of Fig. 3 (see App. H.1).

Naval Robot Kinematics

Figure 17. Active learning on regression datasets with different approximations of σNTKGP and with the empirical NTK. The information
shown is presented in the same manner as Fig. 4 (see App. H.1).

Training-Free Neural Active Learning with Initialization-Robustness Guarantees

(a) EMNIST, 2-layer CNN (b) SVHN, WideResNet (c) CIFAR100, Batch size 200, Budget 800 (d) CIFAR100, Batch size 500, Budget 2000

Figure 18. (a-b) Achieved output entropy for active learning on corresponding classification experiments conducted for Fig. 5(c-d). (c-d)
Additional results on classification using NNs with convolutions on CIFAR100.

MNIST (2-layer MLP) EMNIST (3-layer MLP) SVHN (WideResNet) EMNIST (CNN)

Figure 19. Results on classification with varying batch sizes.

MNIST (3-layer MLP)

Figure 20. Performances of our EV-GP-EMP with varying NN widths for data selection (x-axis) and NN training (different lines).

Training-Free Neural Active Learning with Initialization-Robustness Guarantees

MNIST (2-layer MLP) EMNIST (3-layer MLP) SVHN (WideResNet)

Figure 21. Results on classification with BADGE and MLMOC when random initial data is given. In the examples with (Rand. Init.)
quantifier, the algorithm randomizes the first batch of data instead of using their algorithm to first select the points.

Robot Kinematics
Scores at |L| = 20 Scores at |L| = 200 Scores progression

Naval
Scores at |L| = 20 Scores at |L| = 200 Scores progression

Figure 22. Further results related to EV-GP+MS from ablation experiments conducted for Fig. 7. The graphs presents how EV-GP+MS
selects a model during one trial of active learning. Left and center: the plots between αM and the obtained test MSE for each model
architecture at different iterations of the active learning process. Points with the same shapes are models with the same activation functions
but varying depth. Right: visualization of which models are selected by EV-GP+MS in each round. The gray crosses represent the
resulting training when using a particular architecture from M. The red line represents the choice from EV-GP+MS, and the blue line
represents the training if we stuck with the 2-layer MLP with ReLU activation throughout.

Training-Free Neural Active Learning with Initialization-Robustness Guarantees

Sinusoidal
Scores at |L| = 20 Scores at |L| = 200 Scores progression Comparison

Handwritten Digits (Regression)
Scores at |L| = 20 Scores at |L| = 200 Scores progression Comparison

Protein
Scores at |L| = 20 Scores at |L| = 200 Scores progression Comparison

Figure 23. Additional experiments for EV-GP+MS conducted on other datasets. The data presented is presented in the same manner as
Figs. 7 and 22.

