
Training DynamicsTraining Point Selection in PINNs

Empirical results: PINNACLE outperforms benchmarks for various tasks with interpretable point selection

• Physics-Informed Neural Networks (PINN) incorporate PDEs as
soft constraints/regularization terms

• This makes PINNs hard to train, due to:
• Different interacting training dynamics
• A large number of training points needed

Algorithm 1 PINNACLE

1: Input: PINN û✓, learning rate ⌘, number of iterations T , eNTK approx. error �.
2: repeat
3: // Point selection phase
4: Randomly sample candidates Zpool from Z

5: Compute ⇥t using Nystrom approximation
6: Select subset Z ⇢ Zpool to fit constraint using Sampling or K-Means++

7: // Training phase
8: Compute ⇥̄ = ⇥t(Zpool)
9: for t0 = t, . . . , t+ T do

10: ✓t0+1 ✓t0 � ⌘r✓L(û✓t0 ;Z)
11: Exit training if k⇥̄�⇥t0(Zpool)k � �k⇥̄k

12: until training converges or budget exhausted

In theory, PINNACLE-S is also sensitive to the ratio of the pool of points. For example,
regions with many duplicate points will be more likely to be selected during sampling due
to more of such points in the pool. This, however, is an inherent characteristic of many
algorithms which selects a batch of points using sampling or greedy selection methods.
Despite this, in our experiments we select a pool size that is around 4⇥ as large as the
selected points budget in each round, which encourages enough diversity for the algorithm,
while still allowing the algorithm to focus in on particular regions that may help with
training. Future work could be done to make PINNACLE-S more robust to pool size,
through using sampling techniques such as Gibbs sampling which would make the method
independent of pool size.

PINNACLE-K. For the K-Means++ sampling mechanism, we use Euclidean dis-
tance for the embedded vectors. This is similar to the method used in BADGE Ash et al.
(2020). Each dimension of the embedded vector will represent a certain eigenfunction di-
rection (where a larger value represents a stronger alignment in this direction). Therefore,
points that are selected in this method will tend to be pointing in di↵erent directions (i.e.,
act on di↵erent eigenfunction direction from one another), and also encourage selecting
point that have high magnitude (i.e., high change in residual, far away from other points
that has less e↵ect on residual change).

F.2 Training Point Retention Mechanism

We briefly describe how training points chosen in previous rounds can be handled during
training. While it is possible to retain all of the training points ever selected, this can
lead to high computational cost as the training set grows. Furthermore, past results (Wu
et al., 2022) have also shown that retaining all of the training point could lead to worsen
performances.

Alternatively, we can have a case where none of the training points are retained through-
out training. This is done in the case of RAD algorithm (Wu et al., 2022). However, in

29

Algorithm: Iterative phases of (1) point selection to maximize convergence degree and (2) PINN training

• PINNACLE-S: Sample with probability proportional to
• PINNACLE-K: Perform K-Means++ initialization on the

embedding

z α̂(z)

z ↦ (̂λ1/2
t,i ̂at,i(z))p

i=1

Can we jointly select all types of training points in order to
improve the training of PINNs?

Point selection behavior of PINNACLE

Experimental points
(EXP points)

Collocation points
(CL points)

EXP points PDE CL points IC/BC CL points

Inverse
problems

Transfer learning of PINNs with perturbed IC

From Data

Experiments Simulations

Encodes Inductive Bias

Specified PDE and IC/BC

Forward problemseNTK Eigenfunctions in Augmented Space

Under review as a conference paper at ICLR 2024

that adjust loss term weights of the various point types to try improve training dynamics, but do not
consider point selection (Wang et al., 2022c). However, no work thus far has looked into optimizing
all training point types jointly to significantly boost PINN performance.

Given that the solution spaces of the PDE, IC/BC and underlying output function are tightly coupled,
it is inefficient and sub-optimal to select each type of training points separately and ignore cross
information across point types. For different PINNs or even during different stages of training,
some types of training points may also be less important than others.

In this paper, we introduce the algorithm PINN ADAPTIVE COLLOCATION AND EXPERIMENTAL
DATA SELECTION (PINNACLE) that is the first to jointly optimize the selection of all types of
training points (e.g. PDE and IC/BC CL and EXP points) given a budget, making use of cross infor-
mation among the various types of points that past works had not considered to provide significant
PINNs training improvements. Our contributions are summarized as follows:

• We introduce the problem of joint point selection for improving PINNs training (Sec. 3),
and propose a novel representation for the augmented input space for PINNs that enables
all types of training points for PINNs to be analyzed simultaneously (Sec. 4.1).

• With this augmented input space, we analyze the PINNs training dynamics using the com-
bined NTK eigenspectrum which naturally incorporates the cross information among the
various point types encoded by the PDEs and IC/BC constraints (Sec. 4.2).

• Based on this analysis, we define a new notion of convergence for PINNs (convergence
degree) (Sec. 4.3) that characterizes how much a candidate set involving multiple types
of training points would help in the training convergence for the entire augmented space.
We also theoretically show that selecting training points that maximizes the convergence
degree leads to lower generalization error bound for PINNs (Sec. 4.3).

• We present a computation method of the convergence degree using Nystrom approximation
(Sec. 5.1), and two variants of PINNACLE based on maximizing the convergence degree
while also considering the evolution of the empirical NTK (eNTK) of the PINN (Sec. 5.2).

• We empirically illustrate how PINNACLE’s automated point selection across all point
types are interpretable and similar to heuristics of past works, and demonstrate how PIN-
NACLE outperform benchmarks for a range of PDEs in various problem settings: forward
problems, inverse problems, and transfer learning of PINNs for perturbed ICs (Sec. 6).

2 BACKGROUND

Physics-Informed Neural Networks. Consider partial differential equations (PDEs) of the form

N [u,�](x) = f(x) 8x 2 X and Bi[u](x
0

i) = gi(x
0

i) 8x0

i 2 @Xi (1)

where u(x) is the function of interest over a coordinate variable x defined on a bounded domain X ⇢
Rd (where time could be a subcomponent), N is a PDE operator acting on u(x) with parameters1 �,
and Bi[u] are initial/boundary conditions (IC/BCs) for boundaries @Xi ⇢ X . For PINN training, we
assume operators N and B, and functions f and g are known, while � may or may not be known.

Physics-Informed Neural Networks (PINNs) are neural networks (NN) û✓ that approximates u(x).
They are trained on a dataset X that can be partitioned into Xs, Xp and Xb corresponding to the
EXP points, PDE CL points and IC/BC CL points respectively. The PDE and IC/BCs (1) are added
as regularization (typically mean-squared errors terms) in the loss function2

L(û✓;X) =
X

x2Xs

(û✓(x)� u(x))2

2Ns
+�p

X

x2Xp

(N [û✓](x)� f(x))2

2Np
+�b

X

x2Xb

(B[û✓](x)� g(x))2

2Nb

(2)
where the components penalize the failure of û✓ in satisfying ground truth labels u(x), the PDE, and
the IC/BCs constraints respectively, and �p and �b are positive scalar weights.

1To simplify notation, we write N [u,�] as N [u], keeping the � dependence implicit, except for cases where
the task is to learn �. Examples of PDEs, specifically those in our experiments, can be found in Appendix J.1.

2For notational simplicity we will denote a single IC/BC B in subsequent equations, however the results can
easily be generalized to include multiple ICs/BCs as well.

2

Under review as a conference paper at ICLR 2024

NTK of PINNs. The Neural Tangent Kernel (NTK) of PINNs can be expressed as a block matrix
broken down into the various loss components in (2) (Wang et al., 2021a). To illustrate, a PINN
trained with just the EXP points Xs and PDE CL points Xp using gradient descent (GD) with
learning rate ⌘ has training dynamics that can be described by

û✓t+1(Xs)� û✓t(Xs)

N [û✓t+1](Xp)�N [û✓t](Xp)

�
= �⌘

⇥t,ss ⇥t,sp

⇥t,ps ⇥t,pp

�
û✓t(Xs)� u(Xs)

N [û✓t](Xp)� f(Xp)

�
(3)

where Jt,s = r✓û✓t(Xs), Jt,p = r✓N [û✓t](Xp), and ⇥t,ss = Jt,sJ>

t,s, ⇥t,pp = Jt,pJ>

t,p, and
⇥t,sp = ⇥>

t,ps = Jt,pJ>

t,s, are the submatrices of the PINN empirical NTK (eNTK). Past works have
analyzed PINNs training dynamics using the eNTK (Wang et al., 2021a; 2022c; Gao et al., 2023).
We provide additional background information on NTKs for general NNs in Appendix D.

3 POINT SELECTION PROBLEM SETUP

The goal of PINN training is to minimize the composite loss function (2), which comprises of
separate loss terms corresponding to EXP (Xs ⇢ X), PDE CL (Xp ⇢ X), and multiple IC/BC CL
(Xb ⇢ @X) points3. Instead of assuming that the training set is fixed and available without cost,
we consider a more realistic problem setting where we have a limited training points budget. The
choice of training points then becomes important for good training performance.

Hence, the problem is to select training sets Xs, Xp, and Xb given a fixed training budget, to achieve
the best PINN performance4. Due to high acquisition cost (e.g. limited budget for conducting
experiments), we consider a fixed EXP training budget |Xs|. We also consider a combined training
budget for the various CL point types |Xp|+ |Xb| = k, which is limited due to computational cost
at training. Note that the algorithm is allowed to freely allocate the CL budget among the PDE and
various IC/BC point types during training, in contrast to other PINNs algorithms where the user
needs to manually fix the number of training points for each type. Also, while the EXP and CL
points do not share a common budget, they can still be jointly optimized for better performance (i.e.,
EXP points selection could still benefit from information from CL points and vice versa).

4 NTK SPECTRUM AND NN CONVERGENCE IN THE AUGMENTED SPACE

4.1 AUGMENTED INPUT REPRESENTATION FOR PINNS

To analyze the interplay among the training dynamics of different point types, we define a new
augmented space Z ⇢ X ⇥ {s, p, b}, containing training points of all types, as

Z =
�
(x, s) : x 2 X

[
�
(x, p) : x 2 X

[
�
(x, b) : x 2 @X

(4)

where s, p and b are the indicators for the EXP points, PDE CL points and IC/BC CL points
respectively, to specify which type of training point z is associated with. Note that a PDE CL point
z = (x, p) 2 Z is distinct from an EXP point z = (x, s), even though both points have the same
coordinate x. We abuse notation by defining any function h : X ! R to also be defined on Z by
h(z) = h(x, r) , h(x) for all indicators r 2 {s, p, b}, and also define a general prediction operator
F that applies the appropriate operator depending on the indicator r, i.e.,

F [h](x, s) = h(x), F [h](x, p) = N [h](x), and F [h](x, b) = B[h](x). (5)

The residual of the network output at any training point z can then be expressed as R✓t(z) =
F [û✓t](z)� F [u](z), and we can express the loss (2), given appropriately set �r and �b, as

L(û✓;Z) =
1

2

X

z2Z

R✓t(z)
2 =

1

2

X

z2Z

�
F [û✓](z)� F [u](z)

�2
. (6)

3To compare with the active learning problem setting, EXP points can be viewed as queries to the ground
truth oracle, and CL points as queries to oracles that advise whether û✓ satisfies the PDE and IC/BC constraints.

4The specific metric will depend on the specific setting: for forward problems it will be the overall loss for
the function of interest u(x), while for inverse problems it will be for the parameters of interest �

3

Under review as a conference paper at ICLR 2024

NTK of PINNs. The Neural Tangent Kernel (NTK) of PINNs can be expressed as a block matrix
broken down into the various loss components in (2) (Wang et al., 2021a). To illustrate, a PINN
trained with just the EXP points Xs and PDE CL points Xp using gradient descent (GD) with
learning rate ⌘ has training dynamics that can be described by

û✓t+1(Xs)� û✓t(Xs)

N [û✓t+1](Xp)�N [û✓t](Xp)

�
= �⌘

⇥t,ss ⇥t,sp

⇥t,ps ⇥t,pp

�
û✓t(Xs)� u(Xs)

N [û✓t](Xp)� f(Xp)

�
(3)

where Jt,s = r✓û✓t(Xs), Jt,p = r✓N [û✓t](Xp), and ⇥t,ss = Jt,sJ>

t,s, ⇥t,pp = Jt,pJ>

t,p, and
⇥t,sp = ⇥>

t,ps = Jt,pJ>

t,s, are the submatrices of the PINN empirical NTK (eNTK). Past works have
analyzed PINNs training dynamics using the eNTK (Wang et al., 2021a; 2022c; Gao et al., 2023).
We provide additional background information on NTKs for general NNs in Appendix D.

3 POINT SELECTION PROBLEM SETUP

The goal of PINN training is to minimize the composite loss function (2), which comprises of
separate loss terms corresponding to EXP (Xs ⇢ X), PDE CL (Xp ⇢ X), and multiple IC/BC CL
(Xb ⇢ @X) points3. Instead of assuming that the training set is fixed and available without cost,
we consider a more realistic problem setting where we have a limited training points budget. The
choice of training points then becomes important for good training performance.

Hence, the problem is to select training sets Xs, Xp, and Xb given a fixed training budget, to achieve
the best PINN performance4. Due to high acquisition cost (e.g. limited budget for conducting
experiments), we consider a fixed EXP training budget |Xs|. We also consider a combined training
budget for the various CL point types |Xp|+ |Xb| = k, which is limited due to computational cost
at training. Note that the algorithm is allowed to freely allocate the CL budget among the PDE and
various IC/BC point types during training, in contrast to other PINNs algorithms where the user
needs to manually fix the number of training points for each type. Also, while the EXP and CL
points do not share a common budget, they can still be jointly optimized for better performance (i.e.,
EXP points selection could still benefit from information from CL points and vice versa).

4 NTK SPECTRUM AND NN CONVERGENCE IN THE AUGMENTED SPACE

4.1 AUGMENTED INPUT REPRESENTATION FOR PINNS

To analyze the interplay among the training dynamics of different point types, we define a new
augmented space Z ⇢ X ⇥ {s, p, b}, containing training points of all types, as

Z =
�
(x, s) : x 2 X

[
�
(x, p) : x 2 X

[
�
(x, b) : x 2 @X

(4)

where s, p and b are the indicators for the EXP points, PDE CL points and IC/BC CL points
respectively, to specify which type of training point z is associated with. Note that a PDE CL point
z = (x, p) 2 Z is distinct from an EXP point z = (x, s), even though both points have the same
coordinate x. We abuse notation by defining any function h : X ! R to also be defined on Z by
h(z) = h(x, r) , h(x) for all indicators r 2 {s, p, b}, and also define a general prediction operator
F that applies the appropriate operator depending on the indicator r, i.e.,

F [h](x, s) = h(x), F [h](x, p) = N [h](x), and F [h](x, b) = B[h](x). (5)

The residual of the network output at any training point z can then be expressed as R✓t(z) =
F [û✓t](z)� F [u](z), and we can express the loss (2), given appropriately set �r and �b, as

L(û✓;Z) =
1

2

X

z2Z

R✓t(z)
2 =

1

2

X

z2Z

�
F [û✓](z)� F [u](z)

�2
. (6)

3To compare with the active learning problem setting, EXP points can be viewed as queries to the ground
truth oracle, and CL points as queries to oracles that advise whether û✓ satisfies the PDE and IC/BC constraints.

4The specific metric will depend on the specific setting: for forward problems it will be the overall loss for
the function of interest u(x), while for inverse problems it will be for the parameters of interest �

3

Under review as a conference paper at ICLR 2024

Using the notations introduced above, the goal of our point selection algorithm would be to select a
training set S from Z which will be the most beneficial for PINNs training. As the point selection is
done on Z space, all types of training points can now be considered together, meaning the algorithm
could automatically consider the cross information between each type of points and prioritize the
budgets accordingly (explored further in Sec. 6.2).

4.2 NTK EIGENBASIS AND TRAINING DYNAMICS INTUITION

With this PINN augmented space, we can now consider different basis that naturally encode cross
information on the interactions among the various point types during training. For instance, the
off-diagonal term ⇥t,sp in (3) encodes how the PDE residuals, through changes in NN parameters
during GD, change the residuals of û✓. This is useful as in practice, we usually have limited EXP
data on û✓ but are able to choose PDE CL points more liberally. Past works studying PINN eNTKs
(Wang et al., 2021a; 2022c) had only used the diagonal eNTK blocks (⇥t,ss, ⇥t,pp) in their methods.

Figure 1: Reconstruction of the PINN pre-
diction values F [û✓](z), after 10k GD train-
ing steps, in (x, s) and (x, p) subspaces of
the 1D Advection equation, using the dom-
inant eNTK eigenfunctions (i.e., those with
the largest eigenvalues).

Specifically, we define the eNTK in the augmented
space5 as ⇥t(z, z0) = r✓F [û✓t](z)r✓F [û✓t](z

0)>.
Since ⇥t is a continuous, positive semi-definite
kernel, by Mercer’s theorem (Schölkopf & Smola,
2002) we can decompose ⇥t to its eigenfunctions
 t,i and corresponding eigenvalues �t,i � 0 (which
are formally defined in Appendix E) as

⇥t(z, z
0) =

1X

i=1

�t,i t,i(z) t,i(z
0) . (7)

Notice that since the eigenfunctions depend on
the entire eNTK matrix, including its off-diagonal
terms, they naturally capture the cross information
between each type of training point. Empirically, we
find that the PINN eNTK eigenvalues falls quickly,
allowing the dominant eigenfunctions (i.e., those
with the largest eigenvalues) to effectively form a
basis for the NN output in augmented space. This
is consistent with results from past eNTK works for vanilla NNs (Kopitkov & Indelman, 2020;
Vakili et al., 2021). Figure 1 shows how the PINN prediction values F [û✓](z) in (x, s) and (x, p)
subspaces can be reconstructed by just the top dominant eNTK eigenfunctions. Further discussion
and more eNTK eigenfunction plots are in Appendix F.

The change in residual at any point z 2 Z , given training set Z for a GD step with small enough ⌘,
is

�R✓t(z;Z) , R✓t+1(z;Z)�R✓t(z;Z) ⇡ �⌘
1X

i=1

�t,i h t,i(Z), R✓t(Z)iH⇥| {z }
at,i(Z)

 t,i(z) (8)

Note that �R✓t(z;Z) describes how the residual at any point z (of any point type, and including
points outside Z) is influenced by GD training on any training set Z that can consist of multiple
point types. Hence, �R✓t(z;Z) describes the overall training dynamics for all point types.

We can gain useful insights on PINN training dynamics by considering the augmented eNTK
eigenbasis. First, we show that the residual components that align to the more dominant eigen-
functions will decay faster. During a training period where the eNTK remains constant, i.e.,
⇥t(z, z0) ⇡ ⇥0(z, z0), the PINN residuals will evolve according to

R✓t(z;Z) ⇡ R✓0(z)�⇥0(z, Z)
1X

i=1

1� e�⌘t�0,i

�0,i
a0,i(Z) 0,i(Z) . (9)

We provide a proof sketch of (9) in Appendix F. From (9), we can see that the residual component
that is aligned to the eigenfunction t,i (given by at,i(Z)) will decay as training time t progresses at

5For compactness, we will overload the notations with R✓t(Z) and ⇥t(Z,Z
0) for cases of multiple inputs,

and use ⇥t(Z) to refer to ⇥t(Z,Z).

4

Re-compute training points when eNTK has evolved with
eigenfunctions that are more aligned with labels/true solution

Empirical NTK (eNTK)

• Residual component that aligns with dominant
eigenfunctions will decay faster

Under review as a conference paper at ICLR 2024

(a) After 10k steps of GD (b) After 100k steps of GD

Figure 2: Reconstruction of the true PDE solution of the 1D Advection equation using eigenfunc-
tions of ⇥t at different GD timesteps. For each time step, we plot the eigenfunction component both
for (x, s) subspace (top row) and (x, p) subspace (bottom row).

a rate proportional to ⌘�0,i. For training set points z 2 Z, the decay is exponential as (9) further re-
duces to

P
1

i=1 e
�⌘t�0,i at,i(Z) 0,i(Z). Interestingly, note that (9) applies to all z 2 Z , suggesting

that choosing training point set Z with residual components more aligned to dominant eigenfunc-
tions also results in lower residuals for the entire augmented space and faster overall convergence.

Second, during PINN training, the eNTK eigenfunctions will gradually align to the true target so-
lution. While many theoretical analysis of NTKs assumes a fixed kernel during training, this does
not hold in practice (Kopitkov & Indelman, 2020). Figure 2 shows that the dominant eigenfunctions
can better reconstruct the true PDE solution as training progresses, indicating that the eNTK evolves
during training to further align to the target solution. Notice how the predictions on both subspaces
needed to be considered for PINNs, which had not been explored before in past works. While the top
10 eigenfunctions replicated the (x, p)-subspace prediction better, more eigenfunctions were needed
to reconstruct the full augmented space prediction (both (x, s) and (x, p) subspaces).

This suggests that PINN training consists of two concurrent processes of (1) information propaga-
tion from the residuals to the network parameters mainly along the direction of the dominant eNTK
eigenfunctions, and (2) eNTK eigenfunction evolution to better represent the true PDE solution.
In Sec. 5.2, we propose a point selection algorithm that accounts for both processes by selecting
points that would cause the largest residual decrease to speed up Process (1) while the eNTK re-
mains relatively constant, and re-calibrate the selected training points by re-computing the eNTK to
accommodate Process (2).

4.3 CONVERGENCE DEGREE CRITERION AND RELATIONS TO GENERALIZATION BOUNDS

The change in residual �R✓t(z;Z) (8) only captures the convergence at a single test point z. While
it is possible to consider the average change in residual w.r.t. some validation set, the quality of this
criterion would depend on the chosen set. Instead, to capture the convergence of the whole domain,
we consider the function �R✓t(·;Z) in the reproducing kernel Hilbert Space (RKHS) H⇥t of ⇥t,
with its inner product h·, ·iH⇥t

defined such that h t,i, t,jiH⇥t
= �ij/�t,i. Ignoring factors of ⌘,

we define the convergence degree ↵(Z) to be the RKHS norm of �R✓t(· ;Z), or

↵(Z) , k�R✓t(· ;Z)k2
H⇥t

=
1X

i=0

��1
t,i h�R✓t(· ;Z), t,ii2H⇥t

=
1X

i=0

�t,iat,i(Z)2. (10)

Selecting training points that maximizes the convergence degree could speed up training conver-
gence, which corresponds to Process (1) of the PINN training process. Hence, our point selection
algorithm will be centered around choosing a training set Z that maximizes ↵(Z).

Relations to Generalization Bounds. We now theoretically motivate our criterion further by
showing that training points that maximizes (10) will lead to lower generalization bounds.
Theorem 1 (Generalization Bound, Informal Version of Theorem 2). Consider a PDE of the form
(1). Let Z = [0, 1]d ⇥ {s, p}, and S ⇢ Z be a i.i.d. sample of size NS from a distribution DS .
Let û✓ be a NN which is trained on S by GD, with a small enough learning rate, until convergence.
Then, there exists constants c1, c2, c3 = O

�
poly(1/NS ,�max(⇥0(S))/�min(⇥0(S))

�
such that with

5

Convergence criterion
RKHS norm of residue change when trained on Z

Criterion related to PINN generalization error bound (Thm. 1), and can be
approximated using Nystrom approximation (Prop. 1)

Under review as a conference paper at ICLR 2024

(a) After 10k steps of GD (b) After 100k steps of GD

Figure 2: Reconstruction of the true PDE solution of the 1D Advection equation using eigenfunc-
tions of ⇥t at different GD timesteps. For each time step, we plot the eigenfunction component both
for (x, s) subspace (top row) and (x, p) subspace (bottom row).

a rate proportional to ⌘�0,i. For training set points z 2 Z, the decay is exponential as (9) further re-
duces to

P
1

i=1 e
�⌘t�0,i at,i(Z) 0,i(Z). Interestingly, note that (9) applies to all z 2 Z , suggesting

that choosing training point set Z with residual components more aligned to dominant eigenfunc-
tions also results in lower residuals for the entire augmented space and faster overall convergence.

Second, during PINN training, the eNTK eigenfunctions will gradually align to the true target so-
lution. While many theoretical analysis of NTKs assumes a fixed kernel during training, this does
not hold in practice (Kopitkov & Indelman, 2020). Figure 2 shows that the dominant eigenfunctions
can better reconstruct the true PDE solution as training progresses, indicating that the eNTK evolves
during training to further align to the target solution. Notice how the predictions on both subspaces
needed to be considered for PINNs, which had not been explored before in past works. While the top
10 eigenfunctions replicated the (x, p)-subspace prediction better, more eigenfunctions were needed
to reconstruct the full augmented space prediction (both (x, s) and (x, p) subspaces).

This suggests that PINN training consists of two concurrent processes of (1) information propaga-
tion from the residuals to the network parameters mainly along the direction of the dominant eNTK
eigenfunctions, and (2) eNTK eigenfunction evolution to better represent the true PDE solution.
In Sec. 5.2, we propose a point selection algorithm that accounts for both processes by selecting
points that would cause the largest residual decrease to speed up Process (1) while the eNTK re-
mains relatively constant, and re-calibrate the selected training points by re-computing the eNTK to
accommodate Process (2).

4.3 CONVERGENCE DEGREE CRITERION AND RELATIONS TO GENERALIZATION BOUNDS

The change in residual �R✓t(z;Z) (8) only captures the convergence at a single test point z. While
it is possible to consider the average change in residual w.r.t. some validation set, the quality of this
criterion would depend on the chosen set. Instead, to capture the convergence of the whole domain,
we consider the function �R✓t(·;Z) in the reproducing kernel Hilbert Space (RKHS) H⇥t of ⇥t,
with its inner product h·, ·iH⇥t

defined such that h t,i, t,jiH⇥t
= �ij/�t,i. Ignoring factors of ⌘,

we define the convergence degree ↵(Z) to be the RKHS norm of �R✓t(· ;Z), or

↵(Z) , k�R✓t(· ;Z)k2
H⇥t

=
1X

i=0

��1
t,i h�R✓t(· ;Z), t,ii2H⇥t

=
1X

i=0

�t,iat,i(Z)2. (10)

Selecting training points that maximizes the convergence degree could speed up training conver-
gence, which corresponds to Process (1) of the PINN training process. Hence, our point selection
algorithm will be centered around choosing a training set Z that maximizes ↵(Z).

Relations to Generalization Bounds. We now theoretically motivate our criterion further by
showing that training points that maximizes (10) will lead to lower generalization bounds.
Theorem 1 (Generalization Bound, Informal Version of Theorem 2). Consider a PDE of the form
(1). Let Z = [0, 1]d ⇥ {s, p}, and S ⇢ Z be a i.i.d. sample of size NS from a distribution DS .
Let û✓ be a NN which is trained on S by GD, with a small enough learning rate, until convergence.
Then, there exists constants c1, c2, c3 = O

�
poly(1/NS ,�max(⇥0(S))/�min(⇥0(S))

�
such that with

5

Under review as a conference paper at ICLR 2024

NTK of PINNs. The Neural Tangent Kernel (NTK) of PINNs can be expressed as a block matrix
broken down into the various loss components in (2) (Wang et al., 2021a). To illustrate, a PINN
trained with just the EXP points Xs and PDE CL points Xp using gradient descent (GD) with
learning rate ⌘ has training dynamics that can be described by

û✓t+1(Xs)� û✓t(Xs)

N [û✓t+1](Xp)�N [û✓t](Xp)

�
= �⌘

⇥t,ss ⇥t,sp

⇥t,ps ⇥t,pp

�
û✓t(Xs)� u(Xs)

N [û✓t](Xp)� f(Xp)

�
(3)

where Jt,s = r✓û✓t(Xs), Jt,p = r✓N [û✓t](Xp), and ⇥t,ss = Jt,sJ>

t,s, ⇥t,pp = Jt,pJ>

t,p, and
⇥t,sp = ⇥>

t,ps = Jt,pJ>

t,s, are the submatrices of the PINN empirical NTK (eNTK). Past works have
analyzed PINNs training dynamics using the eNTK (Wang et al., 2021a; 2022c; Gao et al., 2023).
We provide additional background information on NTKs for general NNs in Appendix D.

3 POINT SELECTION PROBLEM SETUP

The goal of PINN training is to minimize the composite loss function (2), which comprises of
separate loss terms corresponding to EXP (Xs ⇢ X), PDE CL (Xp ⇢ X), and multiple IC/BC CL
(Xb ⇢ @X) points3. Instead of assuming that the training set is fixed and available without cost,
we consider a more realistic problem setting where we have a limited training points budget. The
choice of training points then becomes important for good training performance.

Hence, the problem is to select training sets Xs, Xp, and Xb given a fixed training budget, to achieve
the best PINN performance4. Due to high acquisition cost (e.g. limited budget for conducting
experiments), we consider a fixed EXP training budget |Xs|. We also consider a combined training
budget for the various CL point types |Xp|+ |Xb| = k, which is limited due to computational cost
at training. Note that the algorithm is allowed to freely allocate the CL budget among the PDE and
various IC/BC point types during training, in contrast to other PINNs algorithms where the user
needs to manually fix the number of training points for each type. Also, while the EXP and CL
points do not share a common budget, they can still be jointly optimized for better performance (i.e.,
EXP points selection could still benefit from information from CL points and vice versa).

4 NTK SPECTRUM AND NN CONVERGENCE IN THE AUGMENTED SPACE

4.1 AUGMENTED INPUT REPRESENTATION FOR PINNS

To analyze the interplay among the training dynamics of different point types, we define a new
augmented space Z ⇢ X ⇥ {s, p, b}, containing training points of all types, as

Z =
�
(x, s) : x 2 X

[
�
(x, p) : x 2 X

[
�
(x, b) : x 2 @X

(4)

where s, p and b are the indicators for the EXP points, PDE CL points and IC/BC CL points
respectively, to specify which type of training point z is associated with. Note that a PDE CL point
z = (x, p) 2 Z is distinct from an EXP point z = (x, s), even though both points have the same
coordinate x. We abuse notation by defining any function h : X ! R to also be defined on Z by
h(z) = h(x, r) , h(x) for all indicators r 2 {s, p, b}, and also define a general prediction operator
F that applies the appropriate operator depending on the indicator r, i.e.,

F [h](x, s) = h(x), F [h](x, p) = N [h](x), and F [h](x, b) = B[h](x). (5)

The residual of the network output at any training point z can then be expressed as R✓t(z) =
F [û✓t](z)� F [u](z), and we can express the loss (2), given appropriately set �r and �b, as

L(û✓;Z) =
1

2

X

z2Z

R✓t(z)
2 =

1

2

X

z2Z

�
F [û✓](z)� F [u](z)

�2
. (6)

3To compare with the active learning problem setting, EXP points can be viewed as queries to the ground
truth oracle, and CL points as queries to oracles that advise whether û✓ satisfies the PDE and IC/BC constraints.

4The specific metric will depend on the specific setting: for forward problems it will be the overall loss for
the function of interest u(x), while for inverse problems it will be for the parameters of interest �

3

EXP points PDE CL points IC/BC CL points

Dominant eigenfunctions
form basis of NN output

in augmented space

• The eNTK eigenspectrum evolves throughout training

PINNACLE: PINN Adaptive ColLocation and Experimental Points Selection
Gregory Kang Ruey Lau* 1,2 Apivich Hemachandra* 1 See-Kiong Ng1 Bryan Kian Hsiang Low1

1 Department of Computer Science, National University of Singapore* Equal contribution 2 CNRS@Create

This research/project is supported by the National Research Foundation, Singapore under its AI Singapore Programme (AISG Award No: AISG-PhD/2023-01-039J).
This research is part of the programme DesCartes and is supported by the National Research Foundation, Prime Minister’s Office, Singapore under its Campus for Research Excellence and Technological Enterprise (CREATE) programme.

1D Advection

Scan me!

1D Advection

2D Navier-Stokes (inv. scalar) 3D Eikonal (inv. field)

1D Advection

1D Burgers’

NN output Top 10 eig.fn. Top 50 eig.fn. Top 500 eig.fn.

WGL

