
Initialization-Robustness
• Parameters of neural networks are initialized randomly
• As a result, the neural network output after training with gradient 

descent will vary
• A good dataset makes the neural network output vary less with 

respect to its (random) parameter initialization - a dataset that 
guarantees this is better for model training

• Initialization-robustness is important in safety-critical applications
• This is because if a different parameter initialization leads to very 

different model outputs, then we could trust the model less

Active Learning
• Constructing a training set is expensive, especially obtaining labels
‣ An expert may be asked to provide data labels, which can require 

a high cost and can take a long time to obtain the labels
• Can we select a training set in a way that we can still guarantee 

initialization-robustness and low generalization error?

The algorithm should:
• Require little or no initial labelled data in the beginning
• Be able to select unlabelled points in batches (batched active 

learning regime)
• Not require training of any actual neural networks
• Not impose any requirements on the neural network training or 

architecture (e.g. not require us to use Bayesian neural networks)

Neural Network Behaviors

We can show that:
• The difference between neural network output variance and the 

NTKGP variance is bounded
‣ This means we can use NTKGP to approximate the true neural 

network behaviors

• A low NTKGP variance implies a low generalization error
‣ This means training points that result in a low NTKGP variance 

would also result in trained models that is more accurate

EV-GP Criterion

Model Selection
• In reality, we don’t know which NN architecture fits data best
• We propose to find the best NN architecture while doing AL, 

based on the expected MSE loss by bootstrapping, where we select 
the best model after each AL batch

EV-GP+MS Algorithm

Experiments
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True neural network output variance 
requires model training and so it is 

expensive to compute

Gaussian Process with NTK as the 
kernel function (NTKGP)

Efficient to compute and approximate!
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Algorithm 1 EV-GP+MS
Input: Initial labelled data (X0,y0), unlabelled pool XU ,
candidate model architectures M, batch size b
(XL,yL) (X0,y0)
Pick an initial model f⇤ 2M
repeat

// Phase 1: Data selection

for b iterations do
x⇤  argmaxx2XU\XL ↵EV(XL [ {x}; f⇤)
XL  XL [ {x⇤}

end for
Query the unlabelled points in XL for the labels yL

// Phase 2: Model selection

f⇤  argmaxf2M
↵M

�
f ; (XL,yL)

�

until budget exhausted
return (XL,yL), f⇤

(classification) with the same architecture but with differ-
ent model initializations, and then calculate the empirical
mean and variance. All experiments are repeated 5 times
unless stated otherwise, and their mean and standard devi-
ations are reported. Although the theoretical properties of
⌃NN and ⌃NTKGP are applicable to infinite-width NNs, we
follow the practice of previous works on NTKs (He et al.,
2020; Mohamadi et al., 2022) and use finite-width NNs,
because they are able to achieve good performances. In our
experiments, we test our algorithm using both the theoreti-
cal NTKs (computed using the JAX-based (Bradbury et al.,
2018) Neural-Tangents package (Novak et al., 2019)),
and the empirical NTK (computed using PyTorch). We will
use EV-GP-EMP to denote instances when we use the em-
pirical NTK for our algorithm. We discuss the computation
of NTKs further in App. G.2. We adopt the MSE loss (1)
for regression experiments and the cross-entropy loss for
classification experiments, which is consistent with previous
works on NTK (Liu & Zenke, 2020; Shu et al., 2022a). We
find that even though the NTK theory is developed based
on MSE loss, prior works utilizing NTKs have shown that it
is also effective in predicting behaviors of models trained
under cross-entropy loss as well. We compare our algorithm
with previous baselines which also require minimal model
training between different batches and do not incur signifi-
cant extra computations. These benchmarks are described
further in App. G.4. In particular, we compare with ran-
dom selection, K-MEANS++ (Arthur & Vassilvitskii, 2007),
BADGE (Ash et al., 2020), and MLMOC (Mohamadi et al.,
2022). The former two algorithms, like our algorithm, can
select all the points in a single batch, whereas the latter
two are not designed for such a setting but are applicable
after modifications. We omit results comparing our algo-
rithm against BATCHBALD (Kirsch et al., 2019) in the
main paper due to the method requiring a Bayesian neural
network, although their results have been included in H.4.2.

Figure 2. Correlation between our approximate output variance
�2

NTKGP(x|X ) and the empirical NN output variance. The full
description of the graph is given in App. H.1.

We have chosen to focus on the cases with low query bud-
gets since we find this is when the neural networks tend to
show a larger difference in predictive performances, and
so the active learning algorithm needs to be more careful
in selecting which data points to query as they will have
a larger impact on the final selected models. This setting
studied in our experiments is realistic since it simulates the
situations where there is little or no initial labeled data and
querying any data incurs a large cost. The code for the
experiments can be found at https://github.com/
apivich-h/init-robust-al. Other experimental
details are deferred to App. G due to space limitation.

5.1. Correlations Between �2
NTKGP and Neural Network

Output Variance

Here we study whether our approximate output variance
�2

NTKGP (Sec. 3.1) can accurately reflect the output variance
of NNs (w.r.t. the random initializations) and hence the ini-
tialization robustness. Fig. 2 plots the individual variance
predicted by our NTKGP (i.e., �2

NTKGP(x|X ) for some x
and X ) against the empirically observed output variance
resulting from different random initializations. The figure
verifies that �2

NTKGP is highly correlated with the observed
output variance of the NN and the variances are generally
confined within some region, which provides an empirical
corroboration for our Theorem 3.1. This justifies our choice
of using �2

NTKGP to measure the output variance w.r.t. the
model initializations and hence the initialization robustness.
In addition, in App. H.2, we present further experimental re-
sults to show that the output variance predicted using sparse
GP approximations, which is more computationally efficient
(Sec. 3.1.1), is also highly correlated with the observed out-
put variance.

5.2. Experiments on Regression Tasks

Here we evaluate our EV-GP criterion3 (Sec. 3.3) using
regression tasks. In the experiments here, each algorithm is

3When reporting the value ↵EV, we will ignore the �2
NN(x|;)

terms and instead report the average of ��2
NN(x|X ).
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Select active set with 
sequential greedy

Select best model 
given queried points

Repeat until done

The criterion is:

• Label-independent (can 

be used on large batches)

• Submodular (can approx. 

w/ sequential greedy)

Depends on label noise, and how "easy" 
to learn the underlying function

Depends on size of training data, maximum NTK value, 
minimum NTK eigenvalue, and neural network architecture

EMNIST, MLP SVHN, WideResNet 


